Bài 2.64 trang 132 SBT giải tích 12

Bình chọn:
4.9 trên 7 phiếu

Giải bài 2.64 trang 132 sách bài tập giải tích 12. Tìm tập hợp nghiệm của bất phương trình...

Đề bài

Tìm tập hợp nghiệm của bất phương trình \(\displaystyle {\log _3}\frac{{2x}}{{x + 1}} > 1\).

A. \(\displaystyle \left( { - \infty ; - 3} \right)\)

B. \(\displaystyle \left( { - 1; + \infty } \right)\)

C. \(\displaystyle \left( { - \infty ; - 3} \right) \cup \left( { - 1; + \infty } \right)\)

D. \(\displaystyle \left( { - 3; - 1} \right)\)

Phương pháp giải - Xem chi tiết

- Tìm ĐKXĐ.

- Sử dụng phương pháp giải phương trình logarit cơ bản \(\displaystyle {\log _a}f\left( x \right) > m \Leftrightarrow f\left( x \right) > {a^m}\) với \(\displaystyle a > 1\).

Lời giải chi tiết

Điều kiện: \(\displaystyle \frac{{2x}}{{x + 1}} > 0 \Leftrightarrow \left[ \begin{array}{l}x > 0\\x <  - 1\end{array} \right.\).

Ta có: \(\displaystyle {\log _3}\frac{{2x}}{{x + 1}} > 1\) \(\displaystyle  \Leftrightarrow \frac{{2x}}{{x + 1}} > 3\) \(\displaystyle  \Leftrightarrow \frac{{2x - 3x - 3}}{{x + 1}} > 0\) \(\displaystyle  \Leftrightarrow \frac{{ - x - 3}}{{x + 1}} > 0\)\(\displaystyle  \Leftrightarrow  - 3 < x <  - 1\).

Kết hợp điều kiện ta được \(\displaystyle  - 3 < x <  - 1\).

Chọn D.

Loigiaihay.com

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.