Bài 1.15 trang 19 SBT hình học 12


Giải bài 1.15 trang 19 sách bài tập hình học 12. Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = a, BC = b, AA’ = c. Gọi M và N theo thứ tự là trung điểm của A’B’ và B’C’. Tính tỉ số giữa thể tích khối chóp D’.DMN và thể tích khối hộp chữ nhật ABCD.A’B’C’D’

Đề bài

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a,BC = b,AA' = c\). Gọi \(M\) và \(N\) theo thứ tự là trung điểm của \(A'B'\) và \(B'C'\). Tính tỉ số giữa thể tích khối chóp \(D'.DMN\) và thể tích khối hộp chữ nhật \(ABCD.A'B'C'D'\).

Phương pháp giải - Xem chi tiết

- Đổi vị trí đỉnh và đáy của khối chóp, đưa về khối chóp có chiều cao và đáy dễ tính toán.

- Tính thể tích khối chóp theo công thức \(V = \dfrac{1}{3}Sh\).

- Tính thể tích khối hộp chữ nhật. Từ đó suy ra tỉ số.

Lời giải chi tiết

Thể tích khối chóp \(D'.DMN\) bằng thể tích khối chóp \(D.D'MN\)

Ta có:

\(\begin{array}{l}
{S_{A'B'C'D'}} = A'B'.B'C'={ab}\\
{S_{D'A'M}} = \frac{1}{2}A'D.A'M = \frac{1}{2}.b.\frac{a}{2} = \frac{{ab}}{4}\\
{S_{B'MN}} = \frac{1}{2}B'M.B'N = \frac{1}{2}.\frac{a}{2}.\frac{b}{2} = \frac{{ab}}{8}\\
{S_{D'C'N}} = \frac{1}{2}C'D'.C'N = \frac{1}{2}.a.\frac{b}{2} = \frac{{ab}}{4}
\end{array}\)

\({S_{D'MN}} = {S_{A'B'C'D'}} - \left( {{S_{D'A'M}} + {S_{B'MN}} + {S_{D'C'N}}} \right)\)\( = ab - \left( {\dfrac{{ab}}{4} + \dfrac{{ab}}{8} + \dfrac{{ab}}{4}} \right) = \dfrac{{3ab}}{8}\)

Thể tích khối chóp \({V_{D'.DMN}}  = \frac{1}{3}{S_{D'MN}}.DD'\) \(= \dfrac{1}{3}.\dfrac{{3ab}}{8}.c = \dfrac{{abc}}{8}\).

Lại có \({V_{ABCD.A'B'C'D'}} = abc\) \( \Rightarrow \dfrac{{{V_{D'.DMN}}}}{{{V_{ABCD.A'B'C'D'}}}} = \dfrac{1}{8}\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài