Đề kiểm tra 15 phút - Đề số 5 - Chương III - Giải tích 12

Bình chọn:
4.9 trên 7 phiếu

Đáp án và lời giải chi tiết Đề kiểm tra 15 phút - Đề số 5 - Chương III - Giải tích 12

Đề bài

 Câu 1. Mệnh đề nào dưới đây sai ?

A. \(\int {[f(x) + g(x)]dx = \int {f(x)dx + \int {g(x)dx} } } \) với mọi hàm f(x), g(x) liên tục trên R.

B. \(\int {[f(x) - g(x)]dx = \int {f(x)dx - \int {g(x)dx} } } \) với mọi hàm f(x), g(x) liên tục trên R.

C. \(\int {[kf(x)]dx = k\int {f(x)dx} } \) với mọi hằng số k và hàm f(x) liên tục trên R.

D. \(\int {[f'(x)]dx = f(x) + C} \) với mọi f(x) có đạo hàm trên R.

Câu 2. Nếu t=u(x) thì:

A. \(dt = u'(x)dx\)                   

B. \(dx = u'(x)dt\)

C. \(dt = \dfrac{1}{{u(x)}}dx\)            

D. \(dx = \dfrac{1}{{u(t)}}dt\).

Câu 3. Cho hàm số f(x) liên tục trên đoạn [a ; b]. Chọn mệnh đề sai ?

A. \(\int\limits_a^b {f(x)} dx =  - \int\limits_b^a {f(x)} dx\)

B. \(\int\limits_a^b {kdx}  = k(b - a)\)

C. \(\int\limits_a^b {f(x)\,dx}  + \int\limits_b^c f(x)\,dx = \int\limits_a^c f(x)\,dx\)\(,\,c \in [a;b]  \)

D. \(\int\limits_a^b {f(x)\,dx = \int\limits_b^a {f( - x)\,dx} } \).

Câu 4. Biết \(\int\limits_0^5 {f(x)\,dx = 1\,,\,\,\int\limits_5^0 {g(t)\,dt = 2} } \). Giá trị của \(\int\limits_0^5 {[f(x) + g(x)]\,dx} \) là:

A. Không xác định được        

B. 1

C. 3                       

D. – 1 .

Câu 5. Tính tích phân \(I = \int\limits_0^e {\dfrac{{dx}}{{3x + 1}}} \).

A. \(I = \dfrac{1}{3}\left( {\dfrac{1}{{{{\left( {3e + 1} \right)}^2}}} - 1} \right)\)          

B. \(I = \dfrac{1}{{{{\left( {3e + 1} \right)}^2}}} - 1\).

C. \(I = \ln \left( {3e + 1} \right)\)       

D. \(I = \dfrac{1}{3}\ln \left( {3e + 1} \right)\).

Câu 6. Nguyên hàm của hàm số \(f(x) = \sin 2x\) là:

A. \(\cos 2x + C\).             

B. \( - \cos 2x + C\).

C. \(\dfrac{1}{2}\cos 2x + C\).    

D. \( - \dfrac{1}{2}\cos 2x + C\).

Câu 7.Tính \(\int {2x\ln (x - 1)\,dx} \) bằng:

A.\(\left( {{x^2} - 1} \right)\ln \left( {x - 1} \right) - \dfrac{{{x^2}}}{2} - x + C\).

B. \(\left( {{x^2} + 1} \right)\ln \left( {x - 1} \right) - \dfrac{{{x^2}}}{2} - x + C\).

C. \({x^2}\ln (x - 1) - \dfrac{{{x^2}}}{2} - x + C\).

D. \(\left( {{x^2} - 1} \right)\ln \left( {x - 1} \right) - \dfrac{{{x^2}}}{2} + x + C\).

Câu 8. Diện tích hình phẳng được giới hạn bởi parabol \(y = 2 - {x^2}\) và đường thẳng y = - x là:

A. \(\dfrac{9}{2}\)                         B. \(\dfrac{9}{4}\)      

C. 3                           D. \(\dfrac{7}{2}\).

Câu 9. Tìm họ nguyên hàm của hàm số \(f(x) = \dfrac{1}{{5x - 2}}\).

A. \(\int {\dfrac{{dx}}{{5x - 2}} = 5\ln |5x - 2| + C} \).          

B. \(\int {\dfrac{{dx}}{{5x - 2}} =  - \dfrac{1}{2}\ln |5x - 2| + C} \).

C. \(\int {\dfrac{{dx}}{{5x - 2}} = \ln |5x - 2| + C} \).       

D. \(\int {\dfrac{{dx}}{{5x - 2}} = \dfrac{1}{5}\ln |5x - 2| + C} \).

Câu 10. Cho hình (H) giới hạn bởi đồ thị hàm số x = f(y), trục tung và hai đường thẳng y = a, y = a, y = b. Thể tích khối tròn xoay tạo thành khi quay (H) quanh trục Oy là:

A. \(V = \pi \int\limits_a^b {|f(y)|\,dy} \).               

B. \(V = \int\limits_a^b {|f(x)|\,dx} \).

C. \(V = {\pi ^2}\int\limits_a^b {{f^2}(x)\,dx} \).                

D. \(V = \pi \int\limits_a^b {{f^2}(y)\,} dy\)

Lời giải chi tiết

1

2

3

4

5

C

A

D

D

D

6

7

8

9

10

D

A

A

D

D

Lời giải chi tiết 

Câu 1.

Mệnh đề sai: \(\int {[kf(x)]dx = k\int {f(x)dx} } \) với mọi hằng số k và hàm \(f\left( x \right)\)liên tục trên R.

Chọn đáp án C.

Câu 2.

Ta có: \(t = u\left( x \right) \Rightarrow dt = u'\left( x \right)dx\)

Chọn đáp án A.

Câu 3.

Hàm số \(f\left( x \right)\)liên tục trên đoạn \(\left[ {a;b} \right]\) thì:

+ \(\int\limits_a^b {f(x)} dx =  - \int\limits_b^a {f(x)} dx\) 

+ \(\int\limits_a^b {kdx}  = k(b - a)\)

+ \(\int\limits_a^b {f(x)\,dx}  + \int\limits_b^c {f(x)\,dx = \int\limits_a^c {f(x)\,dx\,\,,c \in [a;b]} } \)

Chọn đáp án D.

Câu 4.

Ta có: \(\int\limits_0^5 {f(x)\,dx = 1\,,\,\,\int\limits_5^0 {g(t)\,dt = 2} }\)

\(  \Rightarrow \left\{ \begin{array}{l}\int\limits_0^5 {f\left( x \right)\,dx = 1} \\\int\limits_5^0 {g(t)\,dt = 2}  \Rightarrow \int\limits_0^5 {g\left( x \right)dx}  =  - 2\end{array} \right.\)

Khi đó ta có:

\(\int\limits_0^5 {[f(x) + g(x)]\,dx}  \)\(\,= \int\limits_0^5 {f\left( x \right)} \,dx + \int\limits_0^5 {g\left( x \right)} \,dx \)\(\,= 1 - 2 =  - 1.\)

Chọn đáp án D.

Câu 5.

Ta có:

\(I = \int\limits_0^e {\dfrac{{dx}}{{3x + 1}}}  = \dfrac{1}{3}\int\limits_0^e {\dfrac{{d\left( {3x + 1} \right)}}{{3x + 1}}} \)

\(\;\;\;= \dfrac{1}{3}\ln \left| {3x + 1} \right|\left| \begin{array}{l}^e\\_0\end{array} \right. = \dfrac{1}{3}\left( {\ln \left( {3e + 1} \right)} \right)\)

Chọn đáp án D.

Câu 6.

Ta có: \(\int {\sin 2x} \,dx = \dfrac{1}{2}\int {\sin 2x\,d\left( {2x} \right)} \)\(\, =  - \dfrac{1}{2}\cos 2x + C\)

Chọn đáp án D.

Câu 7.

Đặt \(\left\{ \begin{array}{l}u = \ln \left( {x - 1} \right)\\dv = 2xdx\end{array} \right.\)

\(\Leftrightarrow \left\{ \begin{array}{l}du = \dfrac{1}{{x - 1}}dx\\v = {x^2}\end{array} \right.\)

Khi đó ta có:

\(\int {2x\ln (x - 1)\,dx}  \)

\(= \left[ {\ln \left( {x - 1} \right).{x^2}} \right] - \int {\dfrac{{{x^2}}}{{x - 1}}} \,dx \)

\(= \left[ {\ln \left( {x - 1} \right).{x^2}} \right] - \int {\left( {x + 1 + \dfrac{1}{{x - 1}}} \right)\,dx} \)

\( = \left[ {{x^2}\ln \left( {x - 1} \right)} \right] - \left( {\dfrac{{{x^2}}}{2} + x + \ln \left| {x - 1} \right|} \right) + C\)

\( = \left( {{x^2} - 1} \right)\ln \left( {x - 1} \right) - \dfrac{{{x^2}}}{2} - x + C\)

Chọn đáp án A.

Câu 8.

Phương trình hoành độ giao điểm giữa đồ thị và đường thẳng:

\(2 - {x^2} =  - x \Leftrightarrow {x^2} - x - 2 = 0 \)

\(\Leftrightarrow \left[ \begin{array}{l}x - 2 = 0\\x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 2\\x =  - 1\end{array} \right.\)

Khi đó diện tích hình phẳng được xác định bằng công thức là:

\(S = \int\limits_{ - 1}^2 {\left| {2 + x - {x^2}} \right|} \,dx \)\(\,= \left| {2x + \dfrac{{{x^2}}}{2} - \dfrac{{{x^3}}}{3}} \right|\left| \begin{array}{l}^2\\_{ - 1}\end{array} \right. \)\(\,= \left| {\dfrac{{10}}{3} + \dfrac{7}{6}} \right| = \dfrac{9}{2}.\)

Chọn đáp án A.

Câu 9.

Ta có: \(\int {\dfrac{1}{{5x - 2}}} \,dx = \dfrac{1}{5}\int {\dfrac{{d\left( {5x - 2} \right)}}{{5x - 2}}}  \)\(\,= \dfrac{1}{5}\ln \left| {5x - 2} \right| + C\)

Chọn đáp án D.

Câu 10.

Thể tích khối tròn xoay tạo thành khi quay \(\left( H \right)\) quanh trục Oy là: \(V = \pi \int\limits_a^b {{f^2}(y)\,} dy\)

Chọn đáp án D

Loigiaihay.com

 

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.