Đề kiểm tra 15 phút - Đề số 4 - Chương III - Giải tích 12

Bình chọn:
4.9 trên 7 phiếu

Đáp án và lời giải chi tiết Đề kiểm tra 15 phút - Đề số 4 - Chương III - Giải tích 12

Đề bài

Câu 1. Chọn mệnh đề sai:

A. \(\int {f'(x)dx = f(x) + C} \) 

B.\(\int {f''(x)dx = f'(x) + C} \)

C. \(\int {f'''(x)dx = f''(x) + C} \)   

D. \(\int {f(x)dx = f'(x) + C} \)

Câu 2. Cho hàm số \(f(x) = \dfrac{1}{{x + 2}}\). Hãy chọn mệnh đề sai:

A. \(\int {\dfrac{1}{{x + 2}}dx = \ln (x + 2) + C} \).

B. \(y = \ln (3|x + 2|)\) là một nguyên hàm của f(x).

C. \(y = \ln |x + 2| + C\) là họ nguyên hàm của f(x).

D. \(y = \ln |x + 2|\) là một nguyên hàm của f(x).

Câu 3. Nếu \(t = {x^2}\) thì:

A. \(xf({x^2})dx = f(t)dt\)           

B. \(xf({x^2})dx = \dfrac{1}{2}f(t)dt\)

C. \(xf({x^2})dx = 2f(t)dt\)     

D. \(xf({x^2})dx = {f^2}(t)dt\)

Câu 4. Giả sử \(\int\limits_1^5 {\dfrac{{dx}}{{2x - 1}} = \ln K} \). Giá trị của K là:

A. 9                                B. 3      

C. 81                              D. 8

Câu 5. Tính \(I = \int {\sin \left( {2x + \dfrac{\pi }{2}} \right)\,dx} \) ta được kết quả nào dưới đây:

A. \(I =  - \cos \left( {2x + \dfrac{\pi }{2}} \right) + C\).   

B. \(I = 2\cos \left( {2x + \dfrac{\pi }{2}} \right) + C\).

C. \(I =  - \dfrac{1}{2}\cos \left( {2x + \dfrac{\pi }{2}} \right) + C\).   

D. \(I = \dfrac{1}{2}\cos \left( {2x + \dfrac{\pi }{2}} \right) + C\).

Câu 6. Cho f(x) là hàm số liên tục trên đoạn [a ; b]. Giả sử F(x) là một nguyên hàm của f(x) trên đoạn [a ; b]. Khẳng định nào sau đây là khẳng định đúng ?

A. \(\int\limits_a^b {f(x)\,dx = F(b) - F(a) + C} \).

B. \(\int\limits_a^b {f(x)\,dx = F(a) - F(b)} \).

C. \(\int\limits_a^b {f(x)\,dx = F(b) - F(a)} \).     

D. \(\int\limits_a^b {f(x)\,dx = F(a) - F(b) + C} \).

Câu 7. Tính thể tích vật thể kh quay quanh hình phẳng giới hạn bởi đồ thị hàm số y = sinx, y = 0, x = 0, \(x = \pi \) quanh trục hoành.

A. \(\dfrac{{{\pi ^2}}}{4}\)                      B. \(\dfrac{\pi }{4}\)       

C. \(\dfrac{{{\pi ^2}}}{2}\)                       D.\(\dfrac{\pi }{2}\).

Câu 8. Cho \(\int\limits_{ - 2}^1 {f(x)\,dx = 1\,,\,\,\int\limits_{ - 2}^1 {g(x)\,dx =  - 2} } \). Tính \(\int\limits_{ - 2}^1 {\left( {1 - f(x) + 3g(x)} \right)} \,dx\).

A. 24                        B. -7    

C. – 4                        D. 8.

Câu 9. Tìm \(\int {\dfrac{{dx}}{{{x^2} - 3x + 2}}} \).

A. \(\ln \left| {\dfrac{{x - 2}}{{x - 1}} + C} \right|\).       

B. \(\ln \left| {\dfrac{{x - 1}}{{x - 2}}} \right| + C\).

C. \(\ln \left( {x - 2} \right)\left( {x - 1} \right) + C\).  

D. \(\ln \dfrac{1}{{x - 2}} + \ln \dfrac{1}{{x - 1}} + C\).

Câu 10. Công thức tính diện tích hình phẳng gới hạn bởi đồ thị hàm số y = f(x), đường thẳng y = 0 và hai đường thẳng x = a,  x = b (a<b) là:

A. \(S = \int\limits_a^b {f(x)\,dx} \).  

B. \(S = \int\limits_0^b {f(x)\,dx} \).

C. \(S = \int\limits_b^a {|f(x)|\,dx} \).

D. \(S = \int\limits_a^b {|f(x)|\,dx} \).

Lời giải chi tiết

1

2

3

4

5

D

A

B

B

C

6

7

8

9

10

C

C

C

A

D

 Lời giải chi tiết 

Câu 1.

Mệnh đề sai là: \(\int {f(x)dx = f'(x) + C} \)

Chọn đáp án D.

Câu 2.

Ta có: \(\int {\dfrac{1}{{x + 2}}dx = \ln \left| {x + 2} \right| + C} \)

Chọn đáp án A.

Câu 3.

Ta có: \(t = {x^2} \Rightarrow dt = 2xdx \Leftrightarrow dx = \dfrac{{dt}}{2}.\)

Khi đó \(xf({x^2})dx = \dfrac{1}{2}f(t)dt\)

Chọn đáp án B.

Câu 4.

Ta có: \(\int\limits_1^5 {\dfrac{{dx}}{{2x - 1}} = \dfrac{1}{2}\int\limits_1^5 {\dfrac{{d\left( {2x - 1} \right)}}{{2x - 1}}} }  \)\(\,= \dfrac{1}{2}\ln \left| {2x - 1} \right|\left| \begin{array}{l}^5\\_1\end{array} \right. = \dfrac{1}{2}\left( {\ln 9} \right) = \ln 3\)

Chọn đáp án B.

Câu 5.

Ta có: \(I = \int {\sin \left( {2x + \dfrac{\pi }{2}} \right)\,dx} \)\(\, = \dfrac{1}{2}\int {\sin \left( {2x + \dfrac{\pi }{2}} \right)\,d\left( {2x + \dfrac{\pi }{2}} \right)} \)\(\, =  - \dfrac{1}{2}\cos \left( {2x + \dfrac{\pi }{2}} \right) + C\)

Chọn đáp án C.

Câu 6.

\(f\left( x \right)\)là hàm số liên tục trên đoạn \(\left[ {a;b} \right]\). Giả sử \(F\left( x \right)\)là một nguyên hàm của \(f\left( x \right)\)trên đoạn \(\left[ {a;b} \right]\), khi đó ta có: \(\int\limits_a^b {f(x)\,dx = F(b) - F(a)} \)

Chọn đáp án C.

Câu 7.

Phương trình hoành độ giao điểm của các đồ thị \(\sin x = 0 \Leftrightarrow x = \dfrac{\pi }{2}\)

Khi đó thể tích khối tròn xoay được xác định:

\(V = \pi \int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^2}x\,dx}  + \pi \int\limits_{\dfrac{\pi }{2}}^\pi  {{{\sin }^2}x\,dx}  \)

\(\;\;\;= \int\limits_0^\pi  {\dfrac{{1 - \cos 2x}}{2}dx} \)

\(\;\;\;= \pi \left( {\dfrac{1}{2}x - \dfrac{{\sin 2x}}{4}} \right)\left| \begin{array}{l}^\pi \\_0\end{array} \right.\)

\( \;\;\;= \pi \left( {\dfrac{1}{2}\pi  - 0} \right) = \dfrac{{{\pi ^2}}}{2}\)

Chọn đáp án C.

Câu 8.

Ta có:\(\int\limits_{ - 2}^1 {\left( {1 - f(x) + 3g(x)} \right)} \,dx\)\(\, = x\left| {_{ - 2}^1} \right. - \int\limits_{ - 2}^1 {f\left( x \right)} \,dx + 3\int\limits_{ - 2}^1 {g\left( x \right)} \,dx \)\(\,= 3 - 1 - 3.2 =  - 4\)

Chọn đáp án C.

Câu 9.

Ta có:

\(\int {\dfrac{{dx}}{{{x^2} - 3x + 2}}}  = \int {\dfrac{{dx}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}}  \)

\(\,= \int {\left( {\dfrac{1}{{x - 2}} - \dfrac{1}{{x - 1}}} \right)dx}  \)

\(\,= \ln \left| {x - 2} \right| - \ln \left| {x - 1} \right| + C\)

\( = \ln \left| {\dfrac{{x - 2}}{{x - 1}}} \right| + C\)

Chọn đáp án A.

Câu 10.

Diện tích hình phẳng được xác định bởi công thức: \(S = \int\limits_a^b {|f(x)|\,dx} \)

Chọn đáp án D

Loigiaihay.com

 

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.