Đề kiểm tra 15 phút – Đề số 4 – Chương IV - Giải tích 12

Bình chọn:
4.9 trên 7 phiếu

Đáp án và lời giải chi tiết Đề kiểm tra 15 phút – Đề số 4 – Chương IV - Giải tích 12.

Đề bài

Câu 1. Hai số phức  \({z_1} = 2 + xi\,,\,\,{z_2} = y - 2i\) là liên hợp của nhau khi :

A. \(x = 2,\,y =  - 2\). 

B. \(x = 2,\,y = 2\).

C. \(x =  - 2,\,y =  - 2\).

D. \(x =  - 2,\,y = 2\).

Câu 2. Gọi A, B là các điểm biểu diễn của các số phức \({z_1} =  - 1 + 2i,\,{z_2} = 2 + 3i\). Khi đó, độ dài đoạn thẳng AB là:

A. \(\sqrt {26} \). 

B. 10                              

C. \(\sqrt 5  + \sqrt {13} \)  

D. \(\sqrt {10} \)

Câu 3. Số phức w là căn bậc hai của số phức z nếu:

A. \({z^2} = w\).                

B. \({w^2} = z\).

C. \(\sqrt w  = z\).      

D. \(z =  \pm \sqrt w \).

Câu 4. Mệnh đề nào sau đây sai ?

A. \(|\overline z | = 0\,\, \Leftrightarrow \,\,z = 0\).

B. Hai số phức bằng nhau khi và chỉ khi phần thực và phần ảo tương ứng bằng nhau.

C. \({z_1} = {z_2}\,\,\, \Leftrightarrow \,\,|{z_1}| = |{z_2}|\).

D. Tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện \(|z| = 1\) là đường tròn tâm O, bán kính R=1.

Câu 5. Cho biểu thức \(B = {i^{11}} + {i^{12}} + ... + {i^{109}} + {i^{110}} + {i^{111}}\). Giá trị của B là :

A. B =  - i.                    B. B = i.

C. B = - 1 .                   D. B = 0.

Câu 6. Cho \({z_1},\,{z_2}\) là hai nghiệm của phương trình \({z^2} + 2iz + i = 0\). Chọn mệnh đề đúng :

A. \({z_1} + {z_2} = 2i\).   

B. \({z_1}.{z_2} =  - 2i\).

C. \({z_1}.{z_2} = 2i\)               

D. \({z_1} + {z_2} =  - 2i\).

Câu 7. Cho số phức z = 2 + 5i. Tìm số phức \(w = iz + \overline z \).

A. w = 7 – 3i.                  

B. w = -3 – 3i .

C. w = 3 + 7

D. w = - 7 – 7i.

Câu 8. Trong mặt phẳng phức gọi A, B, C lần lượt là các điểm biểu diễn của các số phức \({z_1} = 3 + 2i,\,\,{z_2} = 3 - 2i,\)\(\,\,{z_3} =  - 3 - 2i\).Khẳng định nào sau đây là sai ?

A. B và C đối xứng với nhau qua trục tung.

B. trọng tâm tam giác ABC là \(G = \left( {1;\dfrac{2}{3}} \right)\).

C. A và B đối xứng với nhau qua trục hoành.

D. A, B, C nằm trên đường tròn tâm tại gốc tọa độ và bán kính bằng \(\sqrt {13} \).

Câu 9. Phương trình \({z^2} + 4z + 5 = 0\) có các nghiệm là :

A. \(2 \pm i\).                   B. \( - 2 \pm i\).

C. \(4 \pm i\).                   D. \( - 4 \pm i\).

Câu 10. Tìm số phức z biết \(|z| + z = 3 + 4i\).

A. z = - 7 + 4i.

B. \(z =  - \dfrac{7}{6} - 4i\).

C. \(z =  - \dfrac{7}{6} + 4i\).  

D. \(z = \dfrac{7}{6} + 4i\).

 

Lời giải chi tiết

1

2

3

4

5

B

D

B

C

A

6

7

8

9

10

D

B

B

B

C

 Lời giải chi tiết 

Câu 1.

Hai số phức \({z_1} = 2 + xi\,,\,\,{z_2} = y - 2i\) là liên hợp của nhau khi \(x = 2,\,y = 2\)

Chọn đáp án B.

Câu 2.

Hai điểm biểu diễn của số phức là \(A\left( { - 1;2} \right),B\left( {2;3} \right)\)

Ta có: \(AB = \sqrt {{{\left( {2 + 1} \right)}^2} + {1^2}}  = \sqrt {10} \)

Chọn đáp án D.

Câu 3.

Số phức w là căn bậc hai của số phức z nếu: \({w^2} = z\)

Chọn đáp án B.

Câu 4.

Mệnh đề sai: \({z_1} = {z_2}\,\,\, \Leftrightarrow \,\,|{z_1}| = |{z_2}|\)

Chọn đáp án C.

Câu 5.

Ta có: \(B = {i^{11}} + {i^{12}} + ... + {i^{109}} + {i^{110}} + {i^{111}}\)

\( = {i^{11}}\left( {1 + {i^2}} \right) + {i^{12}}\left( {1 + {i^2}} \right) +  \ldots  + \)\(\,{i^{108}}\left( {1 + {i^2}} \right) + {i^{111}}\)

\( = {i^{110}}.i =  - i\)

Chọn đáp án A.

Câu 6.

Ta có: \(\left\{ \begin{array}{l}{z_1}{z_1} = i\\{z_1} + {z_2} =  - 2i\end{array} \right.\)

Chọn đáp án D.

Câu 7.

Ta có: \(w = iz + \overline z  = i\left( {2 + 5i} \right) + 2 - 5i \)\(\,= 2 - 5 - 3i =  - 3 - 3i\)

Chọn đáp án B.

Câu 8.

Các điểm biểu diễn lần lượt là: \(A\left( {3;2} \right),B\left( {3; - 2} \right),C\left( { - 3; - 2} \right)\)

+ B và C đối xứng với nhau qua trục tung.

+ Trọng tâm của tam giác ABC là \(G\left( {1; - \dfrac{2}{3}} \right)\)

Chọn đáp án B.

Câu 9.

Ta có: \({z^2} + 4z + 5 = 0 \Leftrightarrow z =  - 2 \pm i\)

Chọn đáp án B.

Câu 10.

Ta có: \(|z| + z = 3 + 4i\)

\(\Rightarrow \sqrt {{a^2} + {b^2}}  + a + bi = 3 + 4i\)

\( \Leftrightarrow a - 3 + \sqrt {{a^2} + {b^2}}  + \left( {b - 4} \right)i = 0\)

\( \Leftrightarrow \left\{ \begin{array}{l}b = 4\\a - 3 + \sqrt {{a^2} + 16}  = 0\end{array} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l}b = 4\\a =  - \dfrac{7}{6}\end{array} \right.\)

Chọn đáp án C.

Loigiaihay.com

 

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.