Đề kiểm tra 15 phút – Đề số 2 – Chương IV - Giải tích 12

Bình chọn:
2.8 trên 5 phiếu

Đáp án và lời giải chi tiết Đề kiểm tra 15 phút – Đề số 2 – Chương IV - Giải tích 12.

Đề bài

Câu 1. Tập hợp các điểm biểu diễn thỏa mãn \(|z| = |1 + i|\) là :

A. Hai điểm             

B. Hai đường thẳng .             

C. Đường tròn bán kính  R = 2.

D. Đường tròn bán kính \(R = \sqrt 2 \).

Câu 2.  Cho z = 2i – 1 .Phần thực và phần ảo của \(\overline z \) là;

A. 2 và 1.                                               

B. – 1 và – 2 .

C. 1 và 2i.                         

D. – 1 và – 2i .

Câu 3. Nghịch đảo của số phức z = 1 – 2i là:

A. 2i – 1 .                     

B. – 1 – 2i .

C. \(\dfrac{1}{5} - \dfrac{2}{5}i\).                        

D. \(\dfrac{1}{5} + \dfrac{2}{5}i\).

Câu 4. Căn bậc hai của số a = - 5 là :

A. 5i và – 5i.         

B. \(5\sqrt i \) và \( - 5\sqrt i \).

C. \(i\sqrt 5 \) và \( - i\sqrt 5 \).        

D. \(\sqrt {5i} \) và \( - \sqrt {5i} \).

Câu 5. Trong các kết luận sau, kết luận nào sai ?

A. Mô đun của số phức z là một số phức.

B. Mô đun của số phức z là một số thực.

C. Mô đun của số phức z là một số thực không âm.

D. Mô đun của số phức z là số thực dương.

Câu 6. Cho biểu thức \(A = i + {i^2} + {i^3} + ... + {i^{99}} + {i^{100}}\). Giá trị của A là :

A. 0                              B. 1           

C. -1                             D. 100

Câu 7. Cho hai số phức \({z_1} =  - 3 + 4i\,,\,\,{z_2} = 4 - 3i\). Mô đun cảu số phức \(z = {z_1} + {z_2} + {z_1}.{z_2}\) là :

A. 27                            B. \(\sqrt {27} \)      

C. \(\sqrt {677} \)                      D. 677.

Câu 8. Trong mặt phẳng tọa độ với hệ tọa độ Oxy, cho các điểm A (4 ; 0), B(1 ; 4), C(1 ; - 1). Gọi G là trọng tâm của tam giác ABC. Biêt rằng G là điểm biểu diễn số phức z. Mệnh đề nào sau đây đúng ?

A. \(z = 1 + 2i\).      

B. \(z = 3 + \dfrac{3}{2}i\).

C. \(z = 3 - \dfrac{3}{2}i\).                

D. \(z = 2 + i\).

Câu 9. Tính giá trị của biểu thức : \(D = \dfrac{{{{\left( {1 + i} \right)}^5}}}{{{{\left( {1 - i} \right)}^3}}}\), ta được kết quả:

A. D = - 2 .                    B. D = 1.

C. D = i.                        D. D = 2.

Câu 10. Cho số phức z = a + bi. Khi đó, số \(\dfrac{1}{{2i}}\left( {z - \overline z } \right)\) là:

A. Một số thực.                

B. 0.

C.  i.                                            

D. Một số thuần ảo.

 

Lời giải chi tiết

1

2

3

4

5

D

B

D

C

D

6

7

8

9

10

A

C

D

D

A

Lời giải chi tiết 

Câu 1.

Ta có: \(|z| = |1 + i| = \sqrt {1 + 1}  = \sqrt 2 \)

\( \Rightarrow \) Đường tròn bán kính \(R = \sqrt 2 \).

Chọn đáp án D.

Câu 2. 

\(z = 2i - 1\) \( \Rightarrow \overline z  =  - 1 - 2i\) có

+ Phần thực là \( - 1\)

+ Phần ảo là \( - 2\).

Chọn đáp án B.

Câu 3.

Số phức nghịch đảo là \(\dfrac{1}{z} = \dfrac{1}{{1 - 2i}} = \dfrac{{1 + 2i}}{{\left( {1 - 2i} \right)\left( {1 + 2i} \right)}} \)\(\,= \dfrac{{1 + 2i}}{{1 + 4}} = \dfrac{1}{5} + \dfrac{2}{5}i\)

Chọn đáp án D.

Câu 4.

Căn bậc hai của số \(a =  - 5\) là: \(i\sqrt 5 \) và \( - i\sqrt 5 \).    

Chọn đáp án C.      

Câu 5.

Ta có\(z = 0 \Rightarrow \left| z \right| = 0\)

Mô đun của số phức z là số thực dương là kết luận sai.

Chọn đáp án D.

Câu 6.

Ta có: \(A = i + {i^2} + {i^3} + ... + {i^{99}} + {i^{100}}\)   

\( = i\left( {1 + {i^2}} \right) + {i^2}\left( {1 + {i^2}} \right) +  \ldots  + {i^{98}}\left( {1 + {i^2}} \right)\)

\( = i.0 + {i^2}.0 +  \ldots  + {i^{98}}.0 = 0\)         

Chọn đáp án A.

Câu 7.

Ta có:

\(z = {z_1} + {z_2} + {z_1}.{z_2} \)

\(=  - 3 + 4i + 4 - 3i + \left( { - 3 + 4i} \right)\left( {4 - 3i} \right)\)

\( = 1 + i + \left( { - 12} \right) + 9i + 16i + 12 \)

\(= 1 + 26i\)

Khi đó \(\left| z \right| = \sqrt {{{26}^2} + 1}  = \sqrt {677} .\)

Chọn đáp án C.

Câu 8.

Tọa độ trọng tâm của tam giác là \(G\left( {2;1} \right)\)

\( \Rightarrow \) Số phức z cần tìm là: \(z = 2 + i\)

Chọn đáp án D.

Câu 9.

Ta có:

\(D = \dfrac{{{{\left( {1 + i} \right)}^5}}}{{{{\left( {1 - i} \right)}^3}}} \)

\(\;\;\;= \dfrac{{{{\left( {1 + i} \right)}^5}{{\left( {1 + i} \right)}^3}}}{{{{\left( {1 - {i^2}} \right)}^3}}} \)

\(\;\;\;= \dfrac{{{{\left( {1 + i} \right)}^8}}}{8} \)

\(\;\;\;= \dfrac{{{{\left[ {\left( {1 + 2i + {i^2}} \right)} \right]}^4}}}{8} \)

\(\;\;\;= \dfrac{{16{i^2}}}{8} = 2\)

Chọn đáp án D.

Câu 10.

Ta có: \(\dfrac{1}{{2i}}\left( {z - \overline z } \right) = \dfrac{1}{{2i}}\left( {a + bi - a + bi} \right) = 2b\)

Số đó là một số thực

Chọn đáp án A.

Loigiaihay.com

 

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.