Đề kiểm tra 15 phút - Đề số 3 - Chương I - Giải Tích 12


Đáp án và lời giải chi tiết Đề thi kiểm tra 15 phút - Đề số 3 - Chương I - Giải Tích 12

Đề bài

Câu 1. Đồ thị sau đây là của hàm số nào?

 

A. \(y =  - {x^3} + 3{x^2} + 1\)

B. \(y = {x^3} - 3x + 1\)

C. \(y = {x^3} - 3{x^2} + 3x + 1\)

D. \(y =  - {x^3} - 3{x^2} - 1\)

Câu 2. Đường thẳng y = 2 là tiệm cận ngang của đồ thị hàm số nào sau đây ?

A. \(y = \dfrac{{2x - 2}}{{x + 2}}\)

B. \(y = \dfrac{{{x^2} + 2x + 2}}{{1 + x}}\)

C. \(y = \dfrac{{2{x^2} + 3}}{{2 - x}}\)

D. \(y = \dfrac{{1 + x}}{{1 - 2x}}\)

Câu 3. Hàm số \(y =  - {x^3} + 3{x^2} - 1\) đồng biến trên khoảng nào ?

A. \(( - \infty ;1)\)

B. \((0;2)\)

C. \((2; + \infty )\)

D. \(( - \infty ; + \infty )\)

Câu 4. Tìm giá trị lớn nhất của hàm số \(y = \sqrt { - {x^2} + 4x} \).

A. 0                    B. 4

C. – 2                 D. 2.

Câu 5. Số giao điểm của đồ thị hàm số \(y = {x^4} + {x^2} - 2\) với trục hoành là

A. 0                    B. 3

C. 2                    D. 1

Câu 6. Cho hàm số \(y = \dfrac{{ax + b}}{{cx + d}}\) với a > 0 có đồ thị như hình vẽ sau. Mệnh đề nào đúng ?

 

A. b < 0, c < 0, d < 0.

B. b > 0 , c > 0, d < 0.

C. b < 0, c > 0, d < 0.

D. b > 0, c < 0, d < 0.

Câu 7. Trong những điểm sau điểm nào thuộc đồ thị hàm số \(y = \dfrac{{x + 1}}{{2x - 1}}\) ?

A. (2 ; - 1)                    B. (1 ; 2)

C. (1; 0)                        D. (0 ; 1).

Câu 8. Đồ thị sau đây là của hàm số nào?

 

A. \(y = {x^3} + 3x - 4\)

B. \(y =  - {x^3} + 3{x^2} - 4\)

C. \(y = {x^3} - 3x - 4\)

D.. \(y = {x^3} - 3{x^2} - 4\)

Câu 9. Cho hàm số y=f(x) xác định và lien tục trên khoảng \(( - \infty ; + \infty )\) có bảng biến thiên như sau:

 

Mệnh đề nào sau đây đúng?

A. Hàm số nghịch biến trên khoảng \((1; + \infty )\).

B. Hàm số đồng biến trên khoảng \(( - \infty ; - 2)\).

C. Hàm số nghịch biến trên khoảng \(( - \infty ;1)\).

D. Hàm số đồng biến trên khoảng \(( - 1; + \infty )\).

Câu 10. Tìm số đường tiệm cận của đồ thị hàm số \(y = \dfrac{{{x^2} - 5x + 4}}{{{x^2} - 1}}\)

A.  0                             B. 2

C.  1                             D. 3

Lời giải chi tiết

Câu

1

2

3

4

5

Đáp án

C

A

B

D

C

Câu

6

7

8

9

10

Đáp án

B

B

B

B

B

Câu 1. 

Đồ thị hàm số đi lên nên loại A, D.

Hàm số đồng biến trên R nên \(y' \ge 0,\forall x \in R\).

Do câu C có \(y' = 3{x^2} - 6x + 3 = 0\)

\( = 3\left( {{x^2} - 2x + 1} \right)\) \( = 3{\left( {x - 1} \right)^2} \ge 0,\forall x \in R\)

\( \Leftrightarrow \) hàm số ở đáp án C thỏa mãn.

Chọn C.

Câu 2.

Do \(\mathop {\lim }\limits_{x \to  + \infty } \dfrac{{2x - 2}}{{x + 2}} \)\(= \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{2x - 2}}{{x + 2}} = 2\)

Chọn A.

Câu 3.

Ta có \(y' =  - 3{x^2} + 6x,\,\,y' = 0\)

\(\Rightarrow \,\, - 3{x^2} + 6x = 0\)

\(\Leftrightarrow \,\,\left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\)

Vậy hàm số đồng biến trên \(\left( {0;2} \right)\)

Chọn B. 

Câu 4.

Ta có \(D = [0;4],\)

\(y' = \dfrac{{ - 2x + 4}}{{2\sqrt { - {x^2} + 4x} }} = 0 \Rightarrow \,\,x = 2\).

\(y(0) = 0, y( 2) = 2, y(4) = 0.\)

Vậy giá trị lớn nhất của hàm số là 2.

Chọn D.

Câu 5.

Số giao điểm của đồ thị hàm số \(y = {x^4} + {x^2} - 2\) với trục hoành là số nghiệm của phương trình \({x^4} + {x^2} - 2 = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}
{x^2} = 1\\
{x^2} = - 2\left( {VN} \right)
\end{array} \right.\)

\( \Leftrightarrow \,\,\left[ \begin{array}{l}x = 1\\x =  - 1\end{array} \right.\).

Vậy số giao điểm là 2.

Chọn C.

Câu 6. Do đường tiệm cận ngang nằm phía trên trục hoành mà \(a > 0\) nên \(\frac{a}{c} > 0 \Rightarrow c > 0\)

Do đường tiệm cận đứng nằm bên phải trục tung nên \( - \frac{d}{c} > 0\), mà \(c > 0\) suy ra \(d <  0.\)

Đồ thị hàm số cắt trục Oy tại điểm \(\left( {0;\frac{b}{d}} \right)\).

Từ đồ thị suy ra \(\frac{b}{d} < 0 \Rightarrow b > 0\) (do d < 0)

Chọn  B.

Câu 7.

Thay tọa độ điểm vào hàm số ta có  điểm \((1; 2)\) thuộc đồ thị hàm số.

Chọn B.

Câu 8.

Nhìn vào đồ thị hàm số ta có \(a < 0\) nên loại A, C, D.

Chọn B.

Câu 9.

Từ bảng biến thiên suy ra hàm số đồng biến trên khoảng \((1; + \infty )\) và \(( - \infty ; - 1)\).

Mà \(\left( { - \infty ; - 2} \right) \subset \left( { - \infty ; - 1} \right)\) nên hàm số đồng biến trên \(\left( { - \infty ; - 2} \right) \).

Chọn B.

Câu 10.

\(\mathop {\lim }\limits_{x \to  \pm \infty } \frac{{{x^2} - 5x + 4}}{{{x^2} - 1}} = 1\) nên \(y = 1\) là đường TCN của đồ thị hàm số.

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 5x + 4}}{{{x^2} - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {x - 4} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{x - 4}}{{x + 1}} =  - \frac{3}{2}\end{array}\)

Nên \(x = 1\) không là TCĐ của đồ thị hàm số.

\(\begin{array}{l}\mathop {\lim }\limits_{x \to  - {1^ + }} \frac{{{x^2} - 5x + 4}}{{{x^2} - 1}}\\ = \mathop {\lim }\limits_{x \to  - {1^ + }} \frac{{\left( {x - 1} \right)\left( {x - 4} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\\ = \mathop {\lim }\limits_{x \to  - {1^ + }} \frac{{x - 4}}{{x + 1}} =  - \infty \\\mathop {\lim }\limits_{x \to  - {1^ - }} \frac{{{x^2} - 5x + 4}}{{{x^2} - 1}} =  + \infty \end{array}\)

Nên \(x =  - 1\) là đường TCĐ của đồ thị hàm số.

Chú ý:

Có thể nhận xét nhanh x=1 là nghiệm của mẫu và cũng là nghiệm của tử (cùng bậc) nên x=1 không là TCĐ.

Còn x=-1 là nghiệm của mẫu nhưng không là nghiệm của tử nên x=-1 là đường TCĐ.

Chọn B.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài