Đề kiểm tra 15 phút - Đề số 1 - Chương 1 - Giải Tích 12


Đáp án và lời giải chi tiết Đề thi kiểm tra 15 phút - Đề số 1 - Chương 1 - Giải Tích 12

Đề bài

Câu 1. Cho hàm số y=f(x) có đạo hàm trên K( K là một khoảng, đoạn hoặc nửa khoảng). Khẳng định nào sau đây đúng?

A. Nếu \(f'(x) \ge 0,\,\forall x \in K\) thì hàm số f(x) đồng biến trên K.

B. Nếu \(f'(x) > 0,\,\forall x \in K\) thì hàm số f(x) nghịch biến trên K.

C. Nếu \(f'(x) > 0,\,\forall x \in K\) thì hàm số f(x) đồng biến trên K.

D. Nếu \(f'(x) \le 0,\forall x \in K\) thì hàm số nghịch biến trên K.  

Câu 2. Hàm số \(y =  - \dfrac{1 }{ 3}{x^3} + x + 1\) đồng biến trên khoảng nào ?

A. \(( - 1; + \infty )\)

B. ( - 1 ; 1)

C. \(( - \infty ;1)\)

D. \(( - \infty ; - 1)\) và \((1; + \infty )\)

Câu 3. Cho hàm số \(y =  - {x^3} + 3{x^2} - 3x + 1\), mệnh đề nào sau đây là đúng?

A. Hàm số luôn nghịch biến;

B. Hàm số luôn đồng biến;

C. Hàm số đạt cực đại tại x = 1;

D. Hàm số đạt cực tiểu tại x = 1.

Câu 4. Giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2}\) trên đoạn [- 1 ; 1] là:

A. – 2                         B. 0

C. – 5                         D. – 4 .

Câu 5. Hàm số \(y = \dfrac{{ - 2x + 1}}{{x - 1}}\) đồng biến trên khoảng nào dưới đây:

A. \(( - \infty ;1)\)

B. \(R\backslash \{ 1\} \)

C. \((0; + \infty )\)

D. R.

Câu 6. Tâm đối xứng của đồ thị hàm số \(y =\dfrac{{3x + 1}}{{x + 1}}\) là

A. (3 ; - 1)                   B. (- 1; 3)

C. (3 ; 1)                     D. (1 ; 3).

Câu 7. Số điểm cực trị của đồ thị hàm số \(y = {x^4} - {x^3}\) là:

A. 1                            B. 0

C.  3                           D.  2.

Câu 8. Giá trị lớn nhất của hàm số \(y = {x^3} - 6{x^2} + 12x + 5\) trên đoạn [0 ; 3] là:

A. 14                            B. 13

C. 5                             D. 10

Câu 9. Có bao nhiêu tiếp tuyến với đồ thị hàm số \(y = \dfrac{{2x + 3}}{{x - 1}}\), biết tiếp tuyến song song vối đường thẳng \(y =  - 5x - 3\)

A. 1                             B. 0

C. 2                             D. 3

Câu 10. Giá trị cực tiểu của hàm số \(y = {x^3} - 3{x^2} - 9x + 2\) là:

A. -20                        B. 7

C. – 25                      D. 3.

Lời giải chi tiết

Câu

1

2

3

4

5

Đáp án

C

B

A

D

A

Câu

6

7

8

9

10

Đáp án

B

A

A

A

C

 

Câu 1.

Nếu \(f'\left( x \right) > 0,\forall x \in K\) thì hàm số đồng biến trên \(K\).

Chú ý:

Đáp án A không đúng vì nếu \(f'\left( x \right) = 0\) với mọi \(x \in K\) thì hàm số là hàm hằng nên không đồng biến trên \(K\).

Chọn C.

Câu 2.

Ta có \(y' =  - {x^2} + 1\)

\(\Rightarrow y' = 0\)

\(\Leftrightarrow \,\, - {x^2} + 1 = 0\)

\(\Leftrightarrow x =  \pm 1\)

Ta có bảng biến thiên:

 

Vậy hàm số đồng biến trên  (- 1; 1).

Chọn đáp án B.

Câu 3.

Ta có

\(y' =  - 3{x^2} + 6x - 3\)\( =  - 3{(x - 1)^2} \le 0,\forall x \in R\)

Vậy hàm số luôn nghịch biến.

Chọn đáp án A.

Câu 4.

Ta có

\(\begin{array}{l}y' = 3{x^2} - 6x,\,\,y' = 0\\ \Leftrightarrow \,\,3{x^2} - 6x = 0\,\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\in [-1;1] \\x = 2\notin [-1;1] \end{array} \right.\\  y(0) = 0,\,\,y( - 1) =  - 4,\,\,y(1) =  - 2.\end{array}\)

Vậy giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2}\)  trên đoạn [-1; 1] là – 4

Chọn đáp án D.

Câu 5.

Ta có \(D = R\backslash \{ 1\} .\)\(y' = \dfrac{1}{{{{\left( {x - 1} \right)}^2}}} > 0,\forall x \in D\) . 

Vậy hàm số đồng biến trên các khoảng \(\left( { - \infty ;1} \right),\left( {1; + \infty } \right)\)

Chọn đáp án A.

Câu 6.

Đồ thị hàm số có đường tiệm cận đứng là x = -1.

Đồ thị hàm số có đường tiệm cận ngang là y = 3.

Vậy tâm đối xứng là giao điểm của hai đường tiệm cận là (-1 ; 3)

Chọn đáp án B.

Câu 7.

\(y' = 4{x^3} - 3{x^2}\,\,,\,y' = 0\)

\(\Leftrightarrow \,\,4{x^3} - 3{x^2} = 0\)

\(\Leftrightarrow \,\left[ \begin{array}{l}x = 0(\text{bội 2})\\x = \dfrac{3}{4}\end{array} \right.\)

Vậy số điểm cực trị của đồ thị hàm số trên là 1 do nghiệm \(x = 0\) là nghiệm kép.

Chọn đáp án A.

Câu 8.

Ta có

\(\begin{array}{l}y' = 3{x^2} - 12x + 12,\,\,y' = 0\\ \Leftrightarrow \,\,3{x^2} - 12x + 12 = 0\\ \Leftrightarrow \,\,3{\left( {x - 2} \right)^2} = 0\\   \Leftrightarrow x = 2\in [0;3]\end{array}\)

\(y(0) = 5,\,\,y(2) = 13,\,\,y(3) = 14\).

Vậy giá trị lớn nhất của hàm số trên đoạn [0 ; 3] là 14

Chọn đáp án A.

Câu 9.

Tiếp tuyến d song song với đường thẳng \(y = -5x -3\) nên có \(k = -5 \).

\(y' = \dfrac{{ - 5}}{{{{\left( {x - 1} \right)}^2}}},\,\,y'({x_0}) =  - 5\\ \Rightarrow \,\dfrac{{ - 5}}{{{{\left( {{x_0} - 1} \right)}^2}}} =  - 5\\ \Leftrightarrow \left[ \begin{array}{l}{x_0} = 2\\{x_0} = 0\end{array} \right.\)

Với \({x_0} = 2\,\, \Rightarrow {y_0} = 7\)

\(\Rightarrow d:\,y =  - 5\left( {x - 2} \right) + 7\) hay \(d:\,\,y =  - 5x + 17\)

Với \({x_0} = 0\,\, \Rightarrow {y_0} =  - 3\)

\(\Rightarrow d:\,y =  - 5\left( {x - 0} \right) - 3 =  - 5x - 3\)  trùng với đường thẳng y= -5x – 3 đề cho.

Vậy chỉ có một đường thẳng thỏa mãn yên cầu đề bài.

Chọn A.

Câu 10.

\(y' = 3{x^2} - 6x - 9,\,\,y' = 0\)

\(\Rightarrow 3{x^2} - 6x - 9 = 0\)

\(\Leftrightarrow \,\left[ \begin{array}{l}x = 3\\x =  - 1\end{array} \right.\)

Ta có bảng biến thiên:

 

Đồ thị đạt cực tiểu tại x = 3 nên giá trị cực tiểu là y(3)= - 25.

Chọn C.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
2.7 trên 11 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài