Đề bài
Chứng minh rằng tam giác \(IEF, IFM, IMN, INE, JEF, JFM, JMN\) và \(JNE\) là những tam giác đều cạnh bằng \( \dfrac a 2\)
Video hướng dẫn giải
Lời giải chi tiết
\(ABCD\) là tứ diện đều ⇒ tam giác \(ABC\) đều \(⇒ AB = BC = CA = a\)
\(I, E, F\) lần lượt là trung điểm của các cạnh \(AC, AB, BC\) nên ta có \(IE, IF, EF\) là các đường trung bình của tam giác \(ABC\)
\(\eqalign{ & \Rightarrow IE = {1 \over 2}BC = {1 \over 2}a \cr & {\rm{IF = }}{1 \over 2}AB = {1 \over 2}a \cr & {\rm{EF = }}{1 \over 2}AC = {1 \over 2}a \cr} \)
Nên tam giác \(IEF\) là tam giác đều cạnh bằng \(\dfrac a 2\)
Chứng minh tương tự ta có:\(IFM, IMN, INE, JEF, JFM, JMN\) và \(JNE\) là những tam giác đều cạnh bằng \(\dfrac a 2\)
Loigiaihay.com
Chứng minh rằng...
Cắt bìa theo mẫu dưới đây (h.1.23)
Cho hình lập phương (H). Gọi (H’) là hình bát diện đều có các đỉnh là tâm các mặt của (H). Tính tỉ số diện tích toàn phần của (H) và (H’).
Chứng minh rằng tâm của các mặt của hình tứ diện đều là các đỉnh của một hình tứ diện đều.
Cho hình bát diện đều ABCDEF:
Đếm số đỉnh, số cạnh của khối bát diện đều...
Tìm ví dụ về khối đa diện lồi và khối đa diện không lồi trong thực tế...
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay
>> Luyện thi TN THPT & ĐH năm 2023 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.
Các bài khác cùng chuyên mục
Sai chính tả
Giải khó hiểu
Giải sai
Lỗi khác
Hãy viết chi tiết giúp Loigiaihay.com
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT:
Đăng ký để nhận lời giải hay và tài liệu miễn phí
Cho phép loigiaihay.com gửi các thông báo đến bạn để nhận được các lời giải hay cũng như tài liệu miễn phí.
Đồng ý Bỏ qua