Câu 4.9 trang 103 SBT Đại số 10 Nâng cao>
Giải bài tập Câu 4.9 trang 103 SBT Đại số 10 Nâng cao.
LG a
Chứng minh rằng, với mọi số nguyên dương k ta đều có
\(\dfrac{1}{{\left( {k + 1} \right)\sqrt k }} < 2\left( {\dfrac{1}{{\sqrt k }} - \dfrac{1}{{\sqrt {k + 1} }}} \right)\)
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}\dfrac{1}{{\left( {k + 1} \right)\sqrt k }} = \dfrac{{\sqrt k }}{{\left( {k + 1} \right)k}} = \sqrt k \left( {\dfrac{1}{k} - \dfrac{1}{{k + 1}}} \right)\\ = \sqrt k \left( {\dfrac{1}{{\sqrt k }} + \dfrac{1}{{\sqrt {k + 1} }}} \right)\left( {\dfrac{1}{{\sqrt k }} - \dfrac{1}{{\sqrt {k + 1} }}} \right)\\ = \left( {1 + \dfrac{{\sqrt k }}{{\sqrt {k + 1} }}} \right)\left( {\dfrac{1}{{\sqrt k }} - \dfrac{1}{{\sqrt {k + 1} }}} \right) < 2\left( {\dfrac{1}{{\sqrt k }} - \dfrac{1}{{\sqrt {k + 1} }}} \right)\end{array}\)
LG b
Áp dụng. Chứng minh rằng
\(\dfrac{1}{2} + \dfrac{1}{{3\sqrt 2 }} + \dfrac{1}{{4\sqrt 3 }} + ... + \dfrac{1}{{\left( {n + 1} \right)\sqrt n }} < 2.\)
Lời giải chi tiết:
\(\begin{array}{l}\dfrac{1}{2} + \dfrac{1}{{3\sqrt 2 }} + \dfrac{1}{{4\sqrt 3 }} + ... + \dfrac{1}{{\left( {n + 1} \right)\sqrt n }} < 2\left( {1 - \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{{\sqrt 3 }} + \dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{\sqrt 4 }} + ... + \dfrac{1}{{\sqrt n }} - \dfrac{1}{{\sqrt {n + 1} }}} \right)\\ = 2\left( {1 - \dfrac{1}{{\sqrt {n + 1} }}} \right) < 2\end{array}\)
Loigiaihay.com
- Câu 4.10 trang 103 SBT Đại số 10 Nâng cao
- Câu 4.11 trang 104 SBT Đại số 10 Nâng cao
- Câu 4.12 trang 104 SBT Đại số 10 Nâng cao
- Câu 4.13 trang 104 SBT Đại số 10 Nâng cao
- Câu 4.14 trang 104 SBT Đại số 10 Nâng cao
>> Xem thêm