Câu 4.7 trang 103 SBT Đại số 10 Nâng cao


Giải bài tập Câu 4.7 trang 103 SBT Đại số 10 Nâng cao.

Quảng cáo

Đề bài

Chứng minh rằng

\({x^n} + 1 \ge 0\) với mọi \(x ≥ -1, n ∈ N^*\).

Lời giải chi tiết

Nếu \(x ≥ 0\) thì \({x^n} + 1 \ge 1 > 0\)

Nếu \(-1 ≤ x ≤ 0\) thì \(|x| ≤ 1\) suy ra \({\left| x \right|^n} \le 1\) hay \(\left| {{x^n}} \right| \le 1.\)

Từ đó ta có \( - {x^n} \le 1\,\left( {vi\, - {x^n} \le \left| {{x^n}} \right|} \right).\)

Vì vậy \({x^n} + 1 \ge 0\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!