Câu 4.4 trang 103 SBT Đại số 10 Nâng cao


Giải bài tập Câu 4.4 trang 103 SBT Đại số 10 Nâng cao.

Lựa chọn câu để xem lời giải nhanh hơn

Cho a, b, c, d là bốn số dương và \(\dfrac{a}{b} < \dfrac{c}{d}.\) Chứng minh rằng

LG a

\(\dfrac{{a + b}}{b} < \dfrac{{c + {\rm{d}}}}{d}\)

Lời giải chi tiết:

 Từ \(\dfrac{a}{b} < \dfrac{c}{d}\,suy\,ra\,\dfrac{a}{b} + 1 < \dfrac{c}{d} + 1\) tức là \(\dfrac{{a + b}}{b} < \dfrac{{c + {\rm{d}}}}{d}.\)

LG b

\(\dfrac{{a + b}}{a} > \dfrac{{c + {\rm{d}}}}{c}\)

Lời giải chi tiết:

Từ \(\dfrac{a}{b} < \dfrac{c}{d}\,\) và a, b, c, d là bốn số dương nên \(\dfrac{b}{a} > \dfrac{{\rm{d}}}{c},\) suy ra \(\dfrac{b}{a} + 1 > \dfrac{{\rm{d}}}{c} + 1,\) tức là \(\dfrac{{b + a}}{a} > \dfrac{{{\rm{d}} + c}}{c}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.