Câu 4.10 trang 103 SBT Đại số 10 Nâng cao>
Giải bài tập Câu 4.10 trang 103 SBT Đại số 10 Nâng cao.
LG a
Cho k > 0, chứng minh \(\dfrac{1}{{{k^3}}} < \dfrac{1}{{k - 1}} - \dfrac{1}{k}.\)
Lời giải chi tiết:
Với \(k > 1\) ta có : \(\dfrac{1}{{{k^3}}} < \dfrac{1}{{{k^2}}} < \dfrac{1}{{\left( {k - 1} \right)k}} = \dfrac{1}{{k - 1}} - \dfrac{1}{k}\)
LG b
Từ kết quả trên, hãy suy ra
\(\dfrac{1}{{{1^3}}} + \dfrac{1}{{{2^3}}} + \dfrac{1}{{{3^3}}} + ... + \dfrac{1}{{{n^3}}} < 2\)
Lời giải chi tiết:
\(\begin{array}{l}\dfrac{1}{{{1^3}}} + \dfrac{1}{{{2^3}}} + \dfrac{1}{{{3^3}}} + ... + \dfrac{1}{{{n^3}}} < 1 + 1 - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{3} - \dfrac{1}{4} + ... + \dfrac{1}{{n - 1}} - \dfrac{1}{n}\\ = 2 - \dfrac{1}{n} < 2.\end{array}\)
Loigiaihay.com
- Câu 4.11 trang 104 SBT Đại số 10 Nâng cao
- Câu 4.12 trang 104 SBT Đại số 10 Nâng cao
- Câu 4.13 trang 104 SBT Đại số 10 Nâng cao
- Câu 4.14 trang 104 SBT Đại số 10 Nâng cao
- Câu 4.15 trang 104 SBT Đại số 10 Nâng cao
>> Xem thêm