Câu 4.15 trang 104 SBT Đại số 10 Nâng cao


Giải bài tập Câu 4.15 trang 104 SBT Đại số 10 Nâng cao.

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Chứng minh rằng \(x + \left| x \right| \ge 0\) với mọi x ∈ R.

 

Lời giải chi tiết:

Với \(x ≥ 0\) thì hiển nhiên \(x + |x| ≥ 0\)

Với \(x < 0\) thì \(x + \left| x \right| = x - x = 0.\)

 

LG b

Chứng minh rằng \(\sqrt {{\rm{x}} + \sqrt {{{\rm{x}}^2} - x + 1} } \) xác định với mọi x ∈ R.

 

Lời giải chi tiết:

\(x + \sqrt {{{\rm{x}}^2} - x + 1}\)

\(  = x + \sqrt {{{\left( {{\rm{x}} - \dfrac{1}{2}} \right)}^2} + \dfrac{3}{4}}  \ge \left( {{\rm{x}} - \dfrac{1}{2}} \right) + \left| {x - \dfrac{1}{2}} \right| \ge 0\)

Vậy \(\sqrt {{\rm{x}} + \sqrt {{{\rm{x}}^2} - x + 1} } \) xác định với mọi x.

Loigiaihay.com

 

Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí