Câu 4.17 trang 105 SBT Đại số 10 Nâng cao


Giải bài tập Câu 4.17 trang 105 SBT Đại số 10 Nâng cao.

Lựa chọn câu để xem lời giải nhanh hơn

Cho ba số không âm a, b, c. Chứng minh các bất đẳng thức sau và chỉ rõ đẳng thức xảy ra khi nào :

LG a

\(\left( {{\rm{a}} + b} \right)\left( {{\rm{a}}b + 1} \right) \ge 4{\rm{a}}b;\)

 

Lời giải chi tiết:

Với \(a ≥ 0, b ≥ 0\) ta có

\(a + b \ge 2\sqrt {ab}  \ge 0;ab + 1 \ge 2\sqrt {{\rm{a}}b}  \ge 0.\)

Từ đó suy ra \(\left( {{\rm{a}} + b} \right)\left( {{\rm{a}}b + 1} \right) \ge 2\sqrt {{\rm{a}}b} .2\sqrt {{\rm{a}}b}  = 4{\rm{a}}b.\)

Đẳng thức xảy ra khi và chỉ khi a = b = 1.

 

LG b

\(\left( {{\rm{a}} + b + c} \right)\left( {{\rm{a}}b + bc + ca} \right) \ge 9{\rm{a}}bc.\)

 

Lời giải chi tiết:

Với \(a ≥ 0, b≥ 0, c ≥ 0\), ta có :

\(\begin{array}{l}a + b + c \ge 3\sqrt[3]{{abc}} \ge 0\\ab + bc + ca \ge 3\sqrt[3]{{{a^2}{b^2}{c^2}}} \ge 0.\end{array}\)

Từ đó suy ra

\(\left( {{\rm{a}} + b + c} \right)\left( {{\rm{a}}b + bc + ca} \right) \ge 3\sqrt[3]{{abc}}.3\sqrt[3]{{{a^2}{b^2}{c^2}}}\)

\(= 9{\rm{a}}bc\)

Đẳng thức xảy ra khi và chỉ khi \(a = b = c\). 

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.