Câu 4.17 trang 105 SBT Đại số 10 Nâng cao


Giải bài tập Câu 4.17 trang 105 SBT Đại số 10 Nâng cao.

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Cho ba số không âm a, b, c. Chứng minh các bất đẳng thức sau và chỉ rõ đẳng thức xảy ra khi nào :

LG a

\(\left( {{\rm{a}} + b} \right)\left( {{\rm{a}}b + 1} \right) \ge 4{\rm{a}}b;\)

 

Lời giải chi tiết:

Với \(a ≥ 0, b ≥ 0\) ta có

\(a + b \ge 2\sqrt {ab}  \ge 0;ab + 1 \ge 2\sqrt {{\rm{a}}b}  \ge 0.\)

Từ đó suy ra \(\left( {{\rm{a}} + b} \right)\left( {{\rm{a}}b + 1} \right) \ge 2\sqrt {{\rm{a}}b} .2\sqrt {{\rm{a}}b}  = 4{\rm{a}}b.\)

Đẳng thức xảy ra khi và chỉ khi a = b = 1.

 

LG b

\(\left( {{\rm{a}} + b + c} \right)\left( {{\rm{a}}b + bc + ca} \right) \ge 9{\rm{a}}bc.\)

 

Lời giải chi tiết:

Với \(a ≥ 0, b≥ 0, c ≥ 0\), ta có :

\(\begin{array}{l}a + b + c \ge 3\sqrt[3]{{abc}} \ge 0\\ab + bc + ca \ge 3\sqrt[3]{{{a^2}{b^2}{c^2}}} \ge 0.\end{array}\)

Từ đó suy ra

\(\left( {{\rm{a}} + b + c} \right)\left( {{\rm{a}}b + bc + ca} \right) \ge 3\sqrt[3]{{abc}}.3\sqrt[3]{{{a^2}{b^2}{c^2}}}\)

\(= 9{\rm{a}}bc\)

Đẳng thức xảy ra khi và chỉ khi \(a = b = c\). 

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!