Câu 4.18 trang 105 SBT Đại số 10 Nâng cao


Giải bài tập Câu 4.18 trang 105 SBT Đại số 10 Nâng cao.

Đề bài

Cho ba số dương a, b, c, chứng minh rằng :

\(\left( {1 + \dfrac{a}{b}} \right)\left( {{\rm{a}} + \dfrac{b}{c}} \right)\left( {1 + \dfrac{c}{a}} \right) \ge 8\)

 

Lời giải chi tiết

Với \(a > 0, b > 0, c > 0\) thì

\(1 + \dfrac{a}{b} \ge 2\sqrt {\dfrac{a}{b}}  \ge 0;\)

\(\,1 + \dfrac{b}{c} \ge 2\sqrt {\dfrac{b}{c}} ;\)

\(\,1 + \dfrac{c}{a} \ge 2\sqrt {\dfrac{c}{a}}  \ge 0\)

Từ đó suy ra \(\left( {1 + \dfrac{a}{b}} \right) \left( {1 + \dfrac{b}{c}} \right)\left( {1 + \dfrac{c}{a}} \right) \ge {2^3}\sqrt {\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{a}}\)

\(  = 8\)

Loigiaihay.com

 

Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí