Bài 4.20 trang 204 SBT giải tích 12


Giải bài 4.20 trang 204 sách bài tập giải tích 12. Giải các phương trình sau trên tập số phức:...

Đề bài

Giải các phương trình sau trên tập số phức:

a) \((3  + 4i)x = (1 + 2i)(4 + i)\)

b) \(2ix + 3 = 5x + 4i\)

c) \(3x(2 – i)  +1 = 2ix(1 + i) + 3i\)

Phương pháp giải - Xem chi tiết

Chuyển vế, tinh toán dựa vào các quy tắc cộng, trừ, nhân, chia số phức.

Lời giải chi tiết

a) \(\left( {3 + 4i} \right)x = \left( {1 + 2i} \right)\left( {4 + i} \right)\) \( \Leftrightarrow \left( {3 + 4i} \right)x = 2 + 9i\) \( \Leftrightarrow x = \dfrac{{2 + 9i}}{{3 + 4i}}\)

\( \Leftrightarrow x = \dfrac{{\left( {2 + 9i} \right)\left( {3 - 4i} \right)}}{{\left( {3 + 4i} \right)\left( {3 - 4i} \right)}}\) \( \Leftrightarrow x = \dfrac{{42 + 19i}}{{25}} = \dfrac{{42}}{{25}} + \dfrac{{19}}{{25}}i\)

b) \(2ix + 3 = 5x + 4i\) \( \Leftrightarrow \left( {5 - 2i} \right)x = 3 - 4i\) \( \Leftrightarrow x = \dfrac{{3 - 4i}}{{5 - 2i}}\) \( \Leftrightarrow x = \dfrac{{\left( {3 - 4i} \right)\left( {5 + 2i} \right)}}{{\left( {5 - 2i} \right)\left( {5 + 2i} \right)}}\) \( \Leftrightarrow x = \dfrac{{23 - 14i}}{{29}} = \dfrac{{23}}{{29}} - \dfrac{{14}}{{29}}i\)

c) \(3x\left( {2 - i} \right) + 1 = 2ix\left( {1 + i} \right) + 3i\) \( \Leftrightarrow x\left( {6 - 3i} \right) - x\left( {2i - 2} \right) = 3i - 1\) \( \Leftrightarrow x\left( {8 - 5i} \right) =  - 1 + 3i\) \( \Leftrightarrow x = \dfrac{{ - 1 + 3i}}{{8 - 5i}}\) \( \Leftrightarrow x = \dfrac{{\left( { - 1 + 3i} \right)\left( {8 + 5i} \right)}}{{\left( {8 - 5i} \right)\left( {8 + 5i} \right)}}\)\( \Leftrightarrow x = \dfrac{{ - 23 + 19i}}{{89}} =  - \dfrac{{23}}{{89}} + \dfrac{{19}}{{89}}i\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 3: Phép chia số phức

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài