Câu 3.6 trang 86 sách bài tập Đại số và Giải tích 11 Nâng cao


Chứng minh rằng với mọi số nguyên

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng với mọi số nguyên \(n \ge 2\), ta luôn có bất đẳng thức sau:


LG a

\(1 + {1 \over {\sqrt 2 }} + {1 \over {\sqrt 3 }} + ... + {1 \over {\sqrt n }} > \sqrt n \)

Lời giải chi tiết:

Ta sẽ chứng minh

\(1 + {1 \over {\sqrt 2 }} + {1 \over {\sqrt 3 }} + ... + {1 \over {\sqrt n }} > \sqrt n \)                                     (1)

Với mọi \(n \ge 2,\) bằng phương pháp quy nạp

Với  \(n = 2,\) hiển nhiên ta có \(1 + {1 \over {\sqrt 2 }} > \sqrt 2 .\) Vì thế, (1) đúng khi \(n = 2\)

Giả sử đã có (1) đúng khi \(n = k,k \in N^*\) và \(k \ge 2,\) khi đó ta có

                                \(1 + {1 \over {\sqrt 2 }} + {1 \over {\sqrt 3 }} + ... + {1 \over {\sqrt k }} + {1 \over {\sqrt {k + 1} }} > \sqrt k  + {1 \over {\sqrt {k + 1} }}\)                    (2)

Mà \(\sqrt k  + {1 \over {\sqrt {k + 1} }} > \sqrt {k + 1} \) (dễ thấy), nên từ  (2) suy ra

                                \(1 + {1 \over {\sqrt 2 }} + {1 \over {\sqrt 3 }} + ... + {1 \over {\sqrt k }} + {1 \over {\sqrt {k + 1} }} > \sqrt {k + 1} \)

Nghĩa là ta cũng có (1) đúng khi \(n = k + 1\)

Từ các chứng minh trên suy ra  (1) đúng với mọi \(n \ge 2\)

LG b

\(1 + {1 \over 2} + {1 \over 3} + ... + {1 \over {{2^n} - 1}} < n\)

Lời giải chi tiết:

Chứng minh bằng phương pháp quy nạp

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài