Câu 3.1 trang 85 sách bài tập Đại số và Giải tích 11 Nâng cao


Chứng minh rằng với mọi số nguyên dương n, ta luôn có đẳng thức sau:

Đề bài

Chứng minh rằng với mọi số nguyên dương n, ta luôn có đẳng thức sau:

\(1.2 + 2.5 + ... + n.\left( {3n - 1} \right) = {n^2}\left( {n + 1} \right)\)

Lời giải chi tiết

Ta sẽ chứng minh

\(1.2 + 2.5 + ... + n\left( {3n - 1} \right) = {n^2}\left( {n + 1} \right)\)               (1)

Với mọi \(n \in N^*,\) bằng phương pháp quy nạp.

Với \(n = 1,\) ta có \(1.2 = 2 = {1^2}.\left( {1 + 1} \right).\) Như vậy, (1) đúng khi \(n = 1.\)

Giả sử (1) đúng khi \(n = k,k \in N^*\) tức là giải sử đã có

\(1.2 + 2.5 + ... + k\left( {3k - 1} \right) = {k^2}\left( {k + 1} \right)\)

Ta sẽ chứng minh (1) cũng đúng khi \(n = k + 1,\) nghĩa là ta sẽ chứng minh

\(1.2 + 2.5 + ... + k.\left( {3k - 1} \right) + \left( {k + 1} \right)\left( {3k + 2} \right) \)

\(= {\left( {k + 1} \right)^2}.\left( {k + 2} \right)\)

Thật vậy, từ giả thiết quy nạp ta có

\(\eqalign{
& 1.2 + 2.5 + ... + k.\left( {3k - 1} \right) + \left( {k + 1} \right)\left( {3k + 2} \right) \cr&= {k^2}.\left( {k + 1} \right) + \left( {k + 1} \right)\left( {3k + 2} \right) \cr 
& = \left( {k + 1} \right)\left( {{k^2} + 3k + 2} \right) \cr 
& = \left( {k + 1} \right)\left( {k + 1} \right)\left( {k + 2} \right) = {\left( {k + 1} \right)^2}.\left( {k + 2} \right) \cr} \)

Từ các chứng minh trên suy ra (1) đúng với mọi \(n \in N^*.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài