Câu 34 trang 57 Sách bài tập Hình học 11 nâng cao.


Cho tứ diện ABCD. Gọi M là trung điểm của AB và N là một điểm thuộc cạnh CD không trùng với C và D. Mặt phẳng (P) qua MN và song song với BC.

Đề bài

Cho tứ diện ABCD. Gọi M là trung điểm của AB và N là một điểm thuộc cạnh CD không trùng với C và D. Mặt phẳng (P) qua MN và song song với BC.

a) Hãy xác định thiết diện của tứ diện khi cắt bởi mp(P).

b) Xác định vị trí của điểm N trên CD sao cho thiết diện là một hình bình hành.

Lời giải chi tiết

a) Mặt phẳng (ABC) chứa BC và BC //(P) nên (ABC) cắt (P) theo giao tuyến \(ME//BC\left( {E \in AC} \right).\) Tương tự, mp(DBC) cắt (P) theo giao tuyến \(NF//BC\left( {F \in BD} \right).\) (Dễ thấy E là trung điểm của AC). Thiết diện là hình thang MENF.

b) Từ câu a), ta có:

\(ME//NF\) và \(ME = {1 \over 2}BC.\)

Vậy tứ giác MENF là hình bình hành khi và chỉ khi \(NF = ME = {1 \over 2}BC\) hay N là trung điểm của CD.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí