Bài 2.31 trang 65 SBT Đại số và Giải tích 11 Nâng cao


Giải bài 2.31 trang 65 sách bài tập Đại số và Giải tích 11 Nâng cao. Tìm...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm

LG a

Số hạng thứ 8 trong khai triển của \({\left( {1 - 2x} \right)^{12}}\)

Lời giải chi tiết:

\(\begin{array}{l}{\left( {1 - 2x} \right)^{12}}\\ = \sum\limits_{k = 0}^{12} {C_{12}^k{{.1}^{12 - k}}.{{\left( { - 2x} \right)}^k}} \\ = \sum\limits_{k = 0}^{12} {C_{12}^k.{{\left( { - 2} \right)}^k}.{x^k}} \end{array}\)

Số hạng thứ 8 ứng với \(k = 7\) nên \({T_8} = C_{12}^7.{\left( { - 2} \right)^7}.{x^7} =  - C_{12}^7{.2^7}.{x^7}\)

LG b

Số hạng thứ 6 trong khai triển của \({\left( {2 - {x \over 2}} \right)^9}\)

Lời giải chi tiết:

\({\left( {2 - \frac{x}{2}} \right)^9} = \sum\limits_{k = 0}^9 {C_9^k{{.2}^{9 - k}}.{{\left( { - \frac{x}{2}} \right)}^k}} \)

Số hạng thứ 6 ứng với \(k = 5\) nên:

\({T_6} = C_9^5{.2^4}.{\left( { - \frac{x}{2}} \right)^5}\) \( =  - C_9^5.16.\frac{{{x^5}}}{{32}} =  - 63{x^5}\)

LG c

Số hạng thứ 12 trong khai triển của \({\left( {2 - x} \right)^{15}}\)

Các số hạng được sắp xếp theo thứ tự lũy thừa tăng dần của x.

Lời giải chi tiết:

\({\left( {2 - x} \right)^{15}} = \sum\limits_{k = 0}^{15} {C_{15}^k{{.2}^{15 - k}}.{{\left( { - x} \right)}^k}} \)

Số hạng thứ 12 ứng với \(k = 11\) nên:

\({T_{12}} = C_{15}^{11}{.2^4}.{\left( { - x} \right)^{11}}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 3: Nhị thức Niu - tơn

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.