CHỈ CÒN 100 SLOT CHO 2K8 XUẤT PHÁT SỚM ÔN ĐGNL & ĐGTD 2026

ƯU ĐÃI 50% HỌC PHÍ + TẶNG MIỄN PHÍ BỘ SÁCH ĐỀ TỔNG HỢP

Chỉ còn 1 ngày
Xem chi tiết

Câu 11 trang 51 Sách bài tập Hình học 11 nâng cao.


Cho bốn điểm không đồng phẳng A, B, C, D; G là trọng tâm của tam giác ACD.

Đề bài

Cho bốn điểm không đồng phẳng A, B, C, D; G là trọng tâm của tam giác ACD. Các điểm M, N, P lần lượt thuộc các đoạn thẳng AB, AC, AD sao cho:

MAMB=NCNA=PDPA=12MAMB=NCNA=PDPA=12

Gọi I, J lần lượt là các giao điểm của đường thẳng MN với BC và MP với BD.

a) Chứng minh rằng các đường thẳng MG, PI, NJ đồng phẳng.

b) Gọi E, F lần lượt các trung điểm của CD, NI; H là giao điểm của MG với BE; K là giao điểm của GF với mp (BCD). Chứng minh rằng các điểm H, K, I, J thẳng hàng.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

a) Ta có:

JNmp(MNP)IPmp(MNP)

CNNA=EGGA=DPPA=12

nên trong mp(ACD) các điểm N, G, P nằm trên một đường thẳng song song với CD. Từ đó G thuộc NP, Suy ra MGmp(MNP). Vậy ba đường thẳng MG, JN, IP đều thuộc mp(MNP).

b) Vì H là giao điểm của MG với BE nên H thuộc mp(MNP) và mp(BCD). Vì K là giao điểm của GF với mp(BCD) nên K thuộc mp(BCD) và mp(MNP).

Mặt khác mp(MNP) và mp(BCD) cắt nhau theo giao tuyến IJ.

Vậy các điểm H và K phải thuộc đường thẳng IJ, tức là bốn điểm I, J, K, H thẳng hàng.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.