Bài 7 trang 47 Vở bài tập toán 9 tập 2


Giải bài 7 trang 47 VBT toán 9 tập 2. Biết rằng đường cong trên hình 14 là pararabol y = ax^2...

Lựa chọn câu để xem lời giải nhanh hơn

Biết rằng đường cong trên hình 14 là pararabol y = ax2

 

LG a

Tìm hệ số a

Phương pháp giải:

Thay tọa độ điểm xác định được trên hình vẽ vào hàm số \(y = a{x^2}\) để tìm hệ số \(a.\)

Lời giải chi tiết:

Theo hình 14, điểm đã cho thuộc parabol có tọa độ là \(\left( { - 2;2} \right)\). Tọa độ của điểm này thỏa mãn đẳng thức \(y = a{x^2}\). Do đó, ta có \(a{\left( { - 2} \right)^2} = 2\) hay  \(4a = 2\)

Vậy \(a = \dfrac{1}{2}.\)

LG b

Tìm tung độ của điểm M thuộc parabol, biết rằng hoành độ của M là -3

Phương pháp giải:

Thay hoành độ của M vào hàm số tìm được để tìm tung độ

Lời giải chi tiết:

Vì \(a = \dfrac{1}{2}\) nên hàm số đã cho là \(y = \dfrac{1}{2}{x^2}\). Điểm M thuộc đồ thị có hoành độ là \( - 3\) thì  tung độ của nó là \(y = \dfrac{1}{2}.{\left( { - 3} \right)^2} = \dfrac{9}{2}\)

LG c

Tìm các điểm thuộc parabol có tung độ bằng 8

Phương pháp giải:

Thay tung độ \(y = 8\) vào hàm số tìm được để tìm hoành độ. Từ đó suy ra các điểm thỏa mãn. 

Lời giải chi tiết:

Giả sử điểm \(A\left( {x;8} \right)\) thuộc parabol. Khi đó tọa độ của  A thỏa mãn đẳng thức \(y = \dfrac{1}{2}{x^2}.\) Như vậy, \(8=\dfrac{1}{2}x^2\). Do đó, \({x^2} = 16\), suy ra \(\left[ \begin{array}{l}x =  - 4\\x = 4\end{array} \right.\)

Vậy các điểm cần tìm là \({A_1}\left( { - 4;8} \right);{A_2}\left( {4;8} \right)\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài