
Đề bài
Từ vị trí \(A\) người ta quan sát một cây cao (h.61)
Biết \(AH = 4\,m,\,HB = 20\,m,\)\(\widehat {BAC} = {45^0}\). Tính chiều cao của cây.
Phương pháp giải - Xem chi tiết
- Tính AB theo định lí pitago.
- Tính \(\widehat {HAB}\) dựa vào tỉ số lượng giác trong tam giác vuông HAB.
- Tính \(\widehat {ABC}\) suy ra góc \(\widehat {ACB}\) dựa vào công thức A+B+C=180.
- Tính BC dựa vào định lí sin trong tam giác ABC.
Lời giải chi tiết
Tam giác \(AHB\) vuông tại \(H\) nên:
\(A{B^2} = A{H^2} + H{B^2} \)\(= {4^2} + {20^2} = 416\)
\(\eqalign{
& \Rightarrow AB \approx 20,4 \cr
& \tan \widehat {BAH} = {{HB} \over {HA}} = {{20} \over 4} = 5 \cr
& \Rightarrow \,\,\,\,\widehat {BAH} \approx 78,{7^0} \cr
& \Rightarrow \,\,\,\,\widehat {ABC} =\widehat {BAH} \approx 78,{7^0} \cr}\)
(hai góc so le trong)
\(\Rightarrow \widehat {BCA} = {180^0} - \widehat {BAC} - \widehat {ABC} \)
\(={180^0} - {45^0} - 78,{7^0} = 56,{3^0}\)
Áp dụng định lí sin trong tam giác ABC ta có:
\(\frac{{BC}}{{\sin \widehat {BAC}}} = \frac{{AB}}{{\sin \widehat {ACB}}} \Rightarrow {{BC} \over {{\mathop{\rm s}\nolimits} {\rm{in4}}{5^0}}} = {{20,4} \over {{\mathop{\rm s}\nolimits} {\rm{in56,}}{{\rm{3}}^0}}}\)
\(\Rightarrow \,\,BC = {{20,4} \over {{\mathop{\rm s}\nolimits} {\rm{in56,}}{{\rm{3}}^0}}}{\mathop{\rm s}\nolimits} {\rm{in4}}{5^0} \approx 17,4\)
Vậy cây cao \(17,4\) m.
Loigiaihay.com
Trên nóc một tòa nhà có một cột ăng-ten cao 5 m.
Biết hai lực cùng tác dụng vào một vật và tạo với nhau góc
Giải tam giác ABC, biết
Giải tam giác ABC, biết
Giải tam giác ABC, biết
Chứng minh rằng diện tích của một tứ giác bằng nửa tích hai đường chéo và sin của góc hợp bởi hai đường chéo đó.
Gọi S là diện tích và R là bán kính đường tròn ngoại tiếp tam giác ABC.
Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AC và BD.
Tam giác ABC có
Chứng minh rằng tam giác ABC vuông ở A
Chứng minh rằng trong một hình bình hành, tổng bình phương các cạnh bằng tổng bình phương của hai đường chéo.
Cho hình bình hành ABCD có
Tam giác ABC có
Tam giác ABC có
Gọi H là trực tâm của tam giác không vuông ABC.
Hình 60 vẽ một chiếc tàu thủy đang neo đậu ở vị trí C trên biển và hai người ở các vị trí quan sát A và B cách nhau 500m.
Chứng minh rằng nếu ba góc của tam giác ABC thỏa mãn hệ thức
Cho tam giác ABC
Tam giác ABC có
Cho tam giác ABC. Chứng minh các khẳng định sau
Hình 59 vẽ một hồ nước nằm ở góc tạo bởi hai con đường.
Cho tam giác ABC
Tam giác ABC có a = 12, b = 13, c = 15.
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: