Bài 18 trang 65 SGK Hình học 10 nâng cao


Cho tam giác ABC. Chứng minh các khẳng định sau

Lựa chọn câu để xem lời giải nhanh hơn

Cho tam giác \(ABC\). Chứng minh các khẳng định sau

LG a

Góc \(A\) nhọn khi và chỉ khi \({a^2} < {b^2} + {c^2}\)

Phương pháp giải:

Sử dụng công thức \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)

Lời giải chi tiết:

Ta có \(\cos A = {{{b^2} + {c^2} - {a^2}} \over {2bc}}\)

\(A\) nhọn \( \Leftrightarrow \cos A > 0\)

\( \Leftrightarrow \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} > 0 \Leftrightarrow {b^2} + {c^2} - {a^2} > 0\)

\(\Leftrightarrow \,\,{b^2} + {c^2} > {a^2}\)

LG b

Góc \(A\) tù khi và chỉ khi \({a^2} > {b^2} + {c^2}\)

Lời giải chi tiết:

\(A\) tù \( \Leftrightarrow \cos A < 0\)

\( \Leftrightarrow \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} < 0 \Leftrightarrow {b^2} + {c^2} - {a^2} < 0\)

\(\Leftrightarrow \,\,{b^2} + {c^2} < {a^2}\)

LG c

Góc \(A\) vuông khi và chỉ khi \({a^2} = {b^2} + {c^2}\)

Lời giải chi tiết:

\(A\) vuông \( \Leftrightarrow \,\,\cos A = 0\)

\( \Leftrightarrow \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = 0 \Leftrightarrow {b^2} + {c^2} - {a^2} = 0\)

\(\Leftrightarrow \,\,{b^2} + {c^2} = {a^2}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4 trên 6 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài