Bài 18 trang 65 SGK Hình học 10 nâng cao


Cho tam giác ABC. Chứng minh các khẳng định sau

Lựa chọn câu để xem lời giải nhanh hơn

Cho tam giác \(ABC\). Chứng minh các khẳng định sau

LG a

Góc \(A\) nhọn khi và chỉ khi \({a^2} < {b^2} + {c^2}\)

Phương pháp giải:

Sử dụng công thức \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)

Lời giải chi tiết:

Ta có \(\cos A = {{{b^2} + {c^2} - {a^2}} \over {2bc}}\)

\(A\) nhọn \( \Leftrightarrow \cos A > 0\)

\( \Leftrightarrow \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} > 0 \Leftrightarrow {b^2} + {c^2} - {a^2} > 0\)

\(\Leftrightarrow \,\,{b^2} + {c^2} > {a^2}\)

LG b

Góc \(A\) tù khi và chỉ khi \({a^2} > {b^2} + {c^2}\)

Lời giải chi tiết:

\(A\) tù \( \Leftrightarrow \cos A < 0\)

\( \Leftrightarrow \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} < 0 \Leftrightarrow {b^2} + {c^2} - {a^2} < 0\)

\(\Leftrightarrow \,\,{b^2} + {c^2} < {a^2}\)

LG c

Góc \(A\) vuông khi và chỉ khi \({a^2} = {b^2} + {c^2}\)

Lời giải chi tiết:

\(A\) vuông \( \Leftrightarrow \,\,\cos A = 0\)

\( \Leftrightarrow \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = 0 \Leftrightarrow {b^2} + {c^2} - {a^2} = 0\)

\(\Leftrightarrow \,\,{b^2} + {c^2} = {a^2}\)

Loigiaihay.com


Bình chọn:
4 trên 6 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.