Bài 33 trang 66 SGK Hình học 10 nâng cao


Giải tam giác ABC, biết

Lựa chọn câu để xem lời giải nhanh hơn

Giải tam giác \(ABC\), biết

LG a

\(c = 14,\,\widehat A = {60^0},\,\widehat B = {40^0}\)

Phương pháp giải:

- Tính 1 góc của tam giác dựa vào tính chất A+B+C=180

- Sử dụng định lí sin tính các cạnh còn lại:\[\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\]

Lời giải chi tiết:

Ta có \(\widehat C = {180^0} - \widehat A  - \widehat B\)\(= {180^0} - {60^0} - {40^0} = {80^0}\)

Áp dụng định lí sin :  

\(\begin{array}{l}
\frac{a}{{\sin A}} = \frac{c}{{\sin C}} \Rightarrow \frac{a}{{\sin {{60}^0}}} = \frac{{14}}{{\sin {{80}^0}}}\\
\Rightarrow a = \frac{{14\sin {{60}^0}}}{{\sin {{80}^0}}} = 12,3\\
\frac{b}{{\sin B}} = \frac{c}{{\sin C}} \Rightarrow \frac{b}{{\sin {{40}^0}}} = \frac{{14}}{{\sin {{80}^0}}}\\
\Rightarrow b = \frac{{14\sin {{40}^0}}}{{\sin {{80}^0}}} = 9,1
\end{array}\)

LG b

\(b = 4,5,\,\widehat A = {30^0},\,\widehat C = {75^0}\)

Lời giải chi tiết:

Ta có \(\widehat B =180^0-\widehat A -\widehat C\) \(= {180^0} - {30^0} - {75^0} = {75^0}\)

Áp dụng định lí sin

\(\begin{array}{l}
\frac{a}{{\sin A}} = \frac{b}{{\sin B}} \Rightarrow \frac{a}{{\sin {{30}^0}}} = \frac{{4,5}}{{\sin {{75}^0}}}\\
\Rightarrow a = \frac{{4,5\sin {{30}^0}}}{{\sin {{75}^0}}} = 2,3\\
\frac{c}{{\sin C}} = \frac{b}{{\sin B}} \Rightarrow \frac{c}{{\sin {{75}^0}}} = \frac{{4,5}}{{\sin {{75}^0}}}\\
\Rightarrow c = \frac{{4,5\sin {{75}^0}}}{{\sin {{75}^0}}} = 4,5
\end{array}\)

LG c

\(c = 35,\,\widehat A = {40^0},\,\widehat C = {120^0}\)

Lời giải chi tiết:

Ta có \(\widehat B =180^0-\widehat A-\widehat C\)\(= {180^0} - {120^0} - {40^0} = {20^0}\)

Áp dụng định lí sin :

\(\begin{array}{l}
\frac{a}{{\sin A}} = \frac{c}{{\sin C}} \Rightarrow \frac{a}{{\sin {{40}^0}}} = \frac{{35}}{{\sin {{120}^0}}}\\
\Rightarrow a = \frac{{35\sin {{40}^0}}}{{\sin {{120}^0}}} = 26\\
\frac{b}{{\sin B}} = \frac{c}{{\sin C}} \Rightarrow \frac{b}{{\sin {{20}^0}}} = \frac{{35}}{{\sin {{120}^0}}}\\
\Rightarrow b = \frac{{35\sin {{20}^0}}}{{\sin {{120}^0}}} = 13,8
\end{array}\)

LG d

\(a = 137,5;\;\widehat B = {83^0},\,\widehat C = {57^0}\)

Lời giải chi tiết:

Ta có \(\widehat A=180^0-\widehat B -\widehat C\)\( = {180^0} - {83^0} - {57^0} = {40^0}\)

Áp dụng định lí sin :

\(\begin{array}{l}
\frac{b}{{\sin B}} = \frac{a}{{\sin A}} \Rightarrow \frac{b}{{\sin {{83}^0}}} = \frac{{137,5}}{{\sin {{40}^0}}}\\
\Rightarrow b = \frac{{137,5\sin {{83}^0}}}{{\sin {{40}^0}}} = 212,3\\
\frac{c}{{\sin C}} = \frac{a}{{\sin A}} \Rightarrow \frac{c}{{\sin {{57}^0}}} = \frac{{137,5}}{{\sin {{40}^0}}}\\
\Rightarrow c = \frac{{137,5\sin {{57}^0}}}{{\sin {{40}^0}}} = 179,4
\end{array}\)

Loigiaihay.com


Bình chọn:
3.4 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí