Bài 30 trang 66 SGK Hình học 10 nâng cao

Bình chọn:
3.7 trên 3 phiếu

Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AC và BD.

Bài 30. Cho tứ giác \(ABCD\). Gọi \(M, N\) lần lượt là trung điểm của \(AC\) và \(BD\). Chứng minh rằng \(A{B^2} + B{C^2} + C{D^2} + D{A^2} = A{C^2} + B{D^2} + 4M{N^2}\).

Hướng dẫn trả lời

 

Áp dụng công thức tính trung tuyến, \(MN\) là trung tuyến của tam giác \(BMD\), ta có

\(M{N^2} = {{B{M^2} + D{M^2}} \over 2} - {{B{D^2}} \over 4}\,\,\,\,\, \Leftrightarrow \,\,4M{N^2} = 2(B{M^2} + D{M^2}) - B{D^2}\,\,\,(1)\)

Tương tự, \(BM, DM\) lần lượt là trung tuyến của tam giác \(ABC, ADC\) nên

\(\eqalign{
& 4B{M^2} = 2(A{B^2} + B{C^2}) - A{C^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \cr
& 4D{M^2} = 2(D{A^2} + C{D^2}) - A{C^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(3) \cr} \)

Từ (2), (3) suy ra

\(2(B{M^2} + D{M^2}) = A{B^2}\, + B{C^2} + C{D^2} + D{A^2} - A{C^2}\,\,(4)\)

Thay (4) vào (1), ta có

\(\eqalign{
& \,\,\,\,\,\,\,\,4M{N^2} = A{B^2} + B{C^2} + C{D^2} + D{A^2} - A{C^2} - B{D^2} \cr
& \Rightarrow \,\,\,A{B^2} + B{C^2} + C{D^2} + D{A^2} = A{C^2} + B{D^2} + 4M{N^2} \cr} \)

loigiaihay.com

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan