Lý thuyết cộng, trừ và nhân số phức


Phép cộng và phép nhân số phức

\((a + bi) + ( c + di) = (a + c) + (b + d)i\);

\((a + bi) - ( c + di) = (a - c) + (b - d)i\);

\((a + bi)( c + di) = (ac - bd) + (ad + bc)i\).

Nhận xét

- Phép cộng và phép nhân số phức được thực hiện tương tự như đối với số thực, với chú ý  \(i^2= -1\) .

- Với mọi \(z, z’ \in \mathbb C\), ta có:

\(z + \overline z  = 2a\) (với \(z = a + bi\))

\( \overline{z+z'}\) = \(\overline z  + \overline {z'} \)

\(z.\overline z  = {\left| z \right|^2} = {\left| {\overline z } \right|^2}\)

\( \overline{zz'}=\overline{z}.\overline{z}'\)

\(|zz'| = |z|.|z'|\)

\(|z + z'| ≤ |z| + |z'|\).

Loigiaihay.com


Bình chọn:
4.1 trên 8 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài