Bài 6 trang 108 SGK Hình học 12 Nâng cao


Giải bài 6 trang 108 SGK Hình học 12 Nâng cao. Bằng phương pháp tọa độ, làm thế nào để xác định được vị trí tương đối...

Lựa chọn câu để xem lời giải nhanh hơn

Bằng phương pháp tọa độ, làm thế nào để xác định được vị trí tương đối

LG a

Giữa hai mặt phẳng?

Lời giải chi tiết:

Cho hai mặt phẳng có phương trình (P): Ax+By+Cz+D=0

(Q): A'x + B'y+C'z + D'=0

Khi đó, (P) cắt (Q) <=> A: B: C ≠ A’: B’: C’

\(\left( P \right)//\left( Q \right)\) \( \Leftrightarrow \dfrac{A}{{A'}} = \dfrac{B}{{B'}} = \dfrac{C}{{C'}} \ne \dfrac{D}{{D'}}\)

\(\left( P \right) \equiv \left( Q \right)\) \( \Leftrightarrow \dfrac{A}{{A'}} = \dfrac{B}{{B'}} = \dfrac{C}{{C'}} = \dfrac{D}{{D'}}\)

Chú ý: A: B: C ≠ A’: B’: C’ khi và chỉ khi có ít nhất hai trong ba tỉ số \(\dfrac{A}{{A'}},\dfrac{B}{{B'}},\dfrac{C}{{C'}}\) khác nhau.

LG b

Giữa hai đường thẳng?

Lời giải chi tiết:

Cho 2 đường thẳng d1 đi qua M1(x1,y1,z1) và vectơ chỉ phương \(\overrightarrow {{u_1}}  = \left( {{a_1},{b_1},{c_1}} \right)\) và d2 đi qua M2 (x2,y2,z2) và vectơ chỉ phương \(\overrightarrow {{u_2}}  = \left( {{a_2},{b_2},{c_2}} \right)\)

Khi đó,

+) d1 và d2 chéo nhau \( \Leftrightarrow \overrightarrow {{u_1}} ,\overrightarrow {{u_2}} ,\overrightarrow {{M_1}{M_2}} \) không đồng phẳng \( \Leftrightarrow \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}}  \ne 0\)

+) d1 và d2 cắt nhau \( \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} ,\overrightarrow {{M_1}{M_2}} \text{ đồng phẳng }\\\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \text{ không cùng phương }\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}}  = 0\\\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] \ne \overrightarrow 0 \end{array} \right.\)

+) d1 và d2 song song \( \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \text { cùng phương }\\{M_1} \in {d_1},{M_1} \notin {d_2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \overrightarrow 0 \\{M_1} \in {d_1},{M_1} \notin {d_2}\end{array} \right.\)

+) d1 và d2 trùng nhau \( \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \text { cùng phương } \\{M_1} \in {d_1},{M_1} \in {d_2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \overrightarrow 0 \\{M_1} \in {d_1},{M_1} \in {d_2}\end{array} \right.\)

+) d1 và d2 vuông góc \( \Leftrightarrow \overrightarrow {{u_1}} .\overrightarrow {{u_2}}  = 0\).

Chú ý: chúng ta có thể xét vị trí tương đối của hai đường thẳng bằng cách xét số nghiệm của hệ phương trình gồm hai phương trình của hai đường thẳng (ẩn là các tham số t, t’)

+ Nếu hệ có nghiệm duy nhất (t;t’) thì hai đường thẳng cắt nhau.

+ Nếu có vô nghiệm thì hai đường thẳng song song (nếu \(\overrightarrow {{u_1}}  = k\overrightarrow {{u_2}} \)) hoặc chéo nhau (nếu \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) không cùng phương).

+ Nếu có vô số nghiệm thì hai đường thẳng trùng nhau.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài