Bài 4 trang 110 SGK Hình học 12 Nâng cao


Cho điểm A(2; 3; 1) và hai đường thẳng: a) Viết phương trình mp(P) đi qua A và . b) Viết phương trình mp(Q) đi qua A và . c) Viết phương trình đường thẳng d đi qua A cắt cả và . d) Tính khoảng cách từ A đến .

Lựa chọn câu để xem lời giải nhanh hơn

Cho điểm A(2; 3; 1) và hai đường thẳng:

\({d_1}:\left\{ \matrix{
x = - 2 - t \hfill \cr 
y = 2 + t \hfill \cr 
z = 2t \hfill \cr} \right.;\) \({d_2}:{{x + 5} \over 3} = {{y - 2} \over { - 1}} = {z \over 1}\)

LG a

Viết phương trình mp(P) đi qua A và \({d_1}\).

Lời giải chi tiết:

Đường thẳng \({d_1}\) qua \({M_1}\left( { - 2;2;0} \right)\) có vectơ chỉ phương \(\overrightarrow u {  _1} = \left( { - 1;1;2} \right)\).

Mp(P) qua A và \({d_1}\) có vectơ pháp tuyến \(\overrightarrow {{n_P}}  = \left[ {\overrightarrow {AM} ;\overrightarrow {{u_1}} } \right] = \left( { - 1;9; - 5} \right)\).
Vậy mp(P) có phương trình: \( - \left( {x + 2} \right) + 9\left( {y - 2} \right) - 5z = 0 \) \(\Leftrightarrow x - 9y + 5z + 20 = 0\).

LG b

Viết phương trình mp(Q) đi qua A và \({d_2}\).

Lời giải chi tiết:

Đường thẳng \({d_2}\) qua \({M_2}\left( { - 5;2;0} \right)\) và có vectơ chỉ phương \(\overrightarrow {{u_2}}  = \left( {3; - 1;1} \right)\).

Mp(Q) qua A và \({d_2}\) có vectơ pháp tuyến \(\overrightarrow {{n_Q}}  = \left[ {\overrightarrow {A{M_2}} ,\overrightarrow {{u_2}} } \right] = \left( { - 2;4;10} \right)\).
Vậy mp(Q) có phương trình: \( - 2\left( {x -2} \right) + 4\left( {y - 3} \right) + 10(z-1) = 0\) \( \Leftrightarrow x - 2y - 5z + 9 = 0\)

LG c

Viết phương trình đường thẳng d đi qua A cắt cả \({d_1}\) và \({d_2}\).

Lời giải chi tiết:

Đường thẳng d đi qua A, cắt cả \({d_1}\) và \({d_2}\) nên d nằm trên cả hai mặt phẳng (P) và (Q), tức là d gồm những điểm có tọa độ thỏa mãn phương trình:

\(\left\{ \matrix{
x - 9y + 5z + 20 = 0 \hfill \cr 
x - 2y - 5z + 9 = 0 \hfill \cr} \right.\).

Đặt x = t ta được hệ

\(\left\{ \matrix{
x = t \hfill \cr 
y = {{29} \over {11}} + {2 \over {11}}t \hfill \cr 
z = {{41} \over {55}} + {7 \over {55}}t \hfill \cr} \right.\).

Đây là phương trình tham số của đường thẳng d, d và \({d_1}\) cùng thuộc mp(P) và có vectơ chỉ phương không cùng phương nên cắt nhau.

d và \({d_2}\) cùng thuộc mp(Q) và có các vectơ chỉ phương không cùng phương nên cắt nhau.

LG d

Tính khoảng cách từ A đến \({d_2}\).

Lời giải chi tiết:

Khoảng cách từ điểm A đến \({d_2}\) là: \(d = {{\left| {\left[ {\overrightarrow {A{M_2}} ;\overrightarrow {{u_2}} } \right]} \right|} \over {\left| {\overrightarrow {{u_2}} } \right|}} = {{\sqrt {4 + 16 + 100} } \over {\sqrt {9 + 1 + 1} }} = {{2\sqrt {30} } \over {\sqrt {11} }}\)

Loigiaihay.com


Bình chọn:
3.5 trên 6 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài