Bài 1 trang 109 SGK Hình học 12 Nâng cao


Cho bốn điểm . a) Chứng minh rằng bốn điểm đó không đồng phẳng. b) Tính thể tích tứ diện ABCD. c) Viết phương trình mp(BCD). d) Viết phương trình mặt cầu tâm A tiếp xúc với mp(BCD). Tìm tọa độ tiếp điểm.

Lựa chọn câu để xem lời giải nhanh hơn

Cho bốn điểm \(A\left( {1;6;2} \right),\,B\left( {4;0;6} \right)\,,\) \(C\left( {5;0;4} \right)\,,\,D\left( {5;1;3} \right)\).

LG a

Chứng minh rằng bốn điểm đó không đồng phẳng.

Lời giải chi tiết:

Ta có \(\overrightarrow {AB}  = \left( {3; - 6;4} \right);\overrightarrow {AC}  = \left( {4; - 6;2} \right);\) \(\overrightarrow {AD}  = \left( {4; - 5;1} \right)\).

\(\eqalign{
& \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] \cr &= \left( {\left| \matrix{
- 6\,\,\,\,\,4 \hfill \cr 
- 6\,\,\,\,\,2 \hfill \cr} \right|;\left| \matrix{
4\,\,\,\,\,\,3 \hfill \cr 
2\,\,\,\,\,\,4 \hfill \cr} \right|;\left| \matrix{
3\,\,\,\, - 6 \hfill \cr 
4\,\,\,\, - 6 \hfill \cr} \right|} \right) \cr & = \left( {12;10;6} \right) \cr 
& \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} \cr & = 12.4 - 5.10 + 6.1 = 4 \ne 0. \cr} \)

Vậy A, B, C, D không đồng phẳng nên ABCD là hình tứ diện.

LG b

Tính thể tích tứ diện ABCD.

Lời giải chi tiết:

Thể tích hình tứ diện ABCD là \({V_{ABCD}} = {1 \over 6}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right| \) \(= {4 \over 6} = {2 \over 3}\).

LG c

Viết phương trình mp(BCD).

Lời giải chi tiết:

Ta có \(\overrightarrow {BC}  = \left( {1;0; - 2} \right);\overrightarrow {BD}  = \left( {1;1; - 3} \right)\)

\(\overrightarrow n = \left[ {\overrightarrow {BC} ;\overrightarrow {BD} } \right] \) \(= \left( {\left| \matrix{
0\,\,\,\, - 2 \hfill \cr 
1\,\,\,\,\, - 3 \hfill \cr} \right|;\left| \matrix{
- 2\,\,\,\,\,1 \hfill \cr 
- 3\,\,\,\,\,\,1 \hfill \cr} \right|;\left| \matrix{
1\,\,\,\,\,\,0 \hfill \cr 
1\,\,\,\,\,\,\,1 \hfill \cr} \right|} \right) \) \(= \left( {2;1;1} \right).\)

Mp(BCD) qua B(4; 0; 6) có vectơ pháp tuyến \(\overrightarrow n \) nên có phương trình:
\(2\left( {x - 4} \right) + 1\left( {y - 0} \right) + 1\left( {z - 6} \right) = 0 \) \(\Leftrightarrow 2x + y + z - 14 = 0\).

LG d

Viết phương trình mặt cầu tâm A tiếp xúc với mp(BCD). Tìm tọa độ tiếp điểm.

Lời giải chi tiết:

Mặt cầu tâm A tiếp xúc với mp(BCD) có bán kính 
\(R = d\left( {A;\left( {BCD} \right)} \right) \) \( = {{\left| {2.1 + 1.6 + 1.2 - 14} \right|} \over {\sqrt {{2^2} + {1^2} + {2^2}} }} = {4 \over {\sqrt 6 }} = {{2\sqrt 6 } \over 3}\).
Phương trình mặt cầu là: \({\left( {x - 1} \right)^2} + {\left( {y - 6} \right)^2} + {\left( {z - 2} \right)^2} = {8 \over 3}\).
Gọi H là tiếp điểm thì AH là đường thẳng đi qua A vuông góc với mp(BCD) nên có vectơ chỉ phương là \(\overrightarrow n  = \left( {2;1;1} \right)\).

Vậy AH có phương trình tham số:

\(\left\{ \matrix{
x = 1 + 2t \hfill \cr 
y = 6 + t \hfill \cr 
z = 2 + t \hfill \cr} \right.\).

Thay x, y, z vào phương trình mp(BCD) ta được:

\(2\left( {1 + 2t} \right) + 6 + t + 2 + t - 14 = 0\) \( \Rightarrow t = {2 \over 3}\). Vậy \(H\left( {{7 \over 3};{{20} \over 3};{8 \over 3}} \right)\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.3 trên 4 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài