Bài 41 trang 36 Vở bài tập toán 8 tập 1


Giải bài 41 trang 36 VBT toán 8 tập 1. Làm tính chia: a) (25x^5 - 5x^4 +10x^2):5x^2 ...

Lựa chọn câu để xem lời giải nhanh hơn

Làm tính chia:

LG a

 \((25{x^5}-{\rm{ }}5{x^4} + {\rm{ }}10{x^2}){\rm{ }}:{\rm{ }}5{x^2}\);       

Phương pháp giải:

Muốn chia đa thức \(A\) cho đơn thức \(B\) (trường hợp các hạng tử của đa thức \(A\) đều chia hết cho đơn thức \(B\)), ta chia mỗi hạng tử của \(A\) cho \(B\) rồi cộng các kết quả với nhau. 

Giải chi tiết:

Thực hiện phép chia ta được:

\( 5x^3– x^2+ 2\) ; 

Giải thích: 

\((25{x^5}-5{x^4} +10{x^2}):5{x^2}\)

\(= (25{x^5}:5{x^2}) +(-5{x^4}:5{x^2}) \)\(+(10{x^2}:{\rm{ }}5{x^2})\)

\(= 5x^3– x^2+ 2\)

LG b

\((15{x^3}{y^2}-{\rm{ }}6{x^2}y{\rm{ }}-{\rm{ }}3{x^2}{y^2}){\rm{ }}:{\rm{ }}6{x^2}y\). 

Phương pháp giải:

Muốn chia đa thức \(A\) cho đơn thức \(B\) (trường hợp các hạng tử của đa thức \(A\) đều chia hết cho đơn thức \(B\)), ta chia mỗi hạng tử của \(A\) cho \(B\) rồi cộng các kết quả với nhau. 

Giải chi tiết:

 \( \dfrac{5}{2}xy - \dfrac{1}{2}y - 1\).

Giải thích: 

 \((15{x^3}{y^2}-{\rm{ }}6{x^2}y{\rm{ }}-{\rm{ }}3{x^2}{y^2}){\rm{ }}:{\rm{ }}6{x^2}y\)

\( = (15{x^3}{y^2}:6{x^2}y) + (-6{x^2}y:6{x^2}y) \)\(+ (-3{x^2}{y^2}:6{x^2}y)\)

\(= \dfrac{15}{6}xy - 1 - \dfrac{3}{6}y = \dfrac{5}{2}xy - \dfrac{1}{2}y - 1\).

Loigiaihay.com


Bình chọn:
4.7 trên 10 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí