
Đề bài
Cho hai đa thức \(A = 3{x^4} + {x^3} + 6x - 5\) và \(B = {x^2} + 1\). Tìm dư \(R\) trong phép chia \(A\) cho \(B\) rồi viết \(A\) dưới dạng \(A = B . Q + R\).
Phương pháp giải - Xem chi tiết
Áp dụng quy tắc chia hai đa thức một biến đã sắp xếp.
Lời giải chi tiết
Thực hiện phép chia \(A\) cho \(B\) ta có: \(Q=(3{x^2} + x - 3);\) \(R=5x-2.\)
Do đó \( 3{x^4} + {x^3} + 6x - 5 \)\(= ({x^2} + 1)(3{x^2} + x - 3) + 5x - 2\)
Giải thích:
Loigiaihay.com
Giải bài 41 trang 36 VBT toán 8 tập 1. Làm tính chia: a) (25x^5 - 5x^4 +10x^2):5x^2 ...
Giải bài 42 trang 36 VBT toán 8 tập 1. Không thực hiện phép chia, hãy xét xem đa thức A có chia hết cho đa thức B hay không. a) A = 15x^4 - 8x^3 + x^2; B = 1/2x^2 ...
Giải bài 43 trang 37 VBT toán 8 tập 1. Tính nhanh: a) (4x^2-9y^2):(2x-3y) ...
Giải bài 39 trang 36 VBT toán 8 tập 1. Áp dụng hằng đẳng thức đáng nhớ để thực hiện phép chia: a) (x^2 +2xy +y^2) : (x+y) ...
Giải phần câu hỏi bài 12 trang 35 VBT toán 8 tập 1. Điền dấu “x” vào ô thích hợp...
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: