Bài 35 trang 32 Vở bài tập toán 8 tập 2


Giải bài 35 trang 32 VBT toán 8 tập 2. Giải phương trình ...

Đề bài

Giải phương trình:

\(\dfrac{{x + 1}}{9} + \dfrac{{x + 2}}{8} = \dfrac{{x + 3}}{7} + \dfrac{{x + 4}}{6}\)

Phương pháp giải - Xem chi tiết

Cách 1: Quy đồng mẫu thức bình thường

Cách 2: Cộng \(2\) vào hai vế của phương trình sau đó giải phương trình mới để tìm \( x\).

Lời giải chi tiết

Cách 1. (Giải thông thường) Mẫu số chung là \(9.8.7=504\). Ta có:

\(\dfrac{{x + 1}}{9} + \dfrac{{x + 2}}{8} \)\(\,= \dfrac{{x + 3}}{7} + \dfrac{{x + 4}}{6}\)

\(\Leftrightarrow \dfrac{{56\left( {x + 1} \right) + 63\left( {x + 2} \right)}}{{504}}\)\(\, = \dfrac{{72\left( {x + 3} \right) + 84\left( {x + 4} \right)}}{{504}}\)

\(\Leftrightarrow 56\left( {x + 1} \right) + 63\left( {x + 2} \right) \)\(\,= 72\left( {x + 3} \right) + 84\left( {x + 4} \right)\)

\(\Leftrightarrow 56x + 56 + 63x + 126\)\(\, = 72x + 216 + 84x + 336\)

\(\Leftrightarrow 119x + 182 = 156x + 552\)

\(\Leftrightarrow - 37x = 370\)

\(\Leftrightarrow x = 370:( - 37) \)

\(\Leftrightarrow x= - 10\)

Cách 2. Nhận thấy \(9+1=8+2=7+3=6+4=10\), ta biến đổi như sau:

\(\dfrac{{x + 1}}{9} + \dfrac{{x + 2}}{8} \)\(\,= \dfrac{{x + 3}}{7} + \dfrac{{x + 4}}{6}\)

\( \Leftrightarrow \dfrac{{x + 1}}{9} + 1 + \dfrac{{x + 2}}{8} + 1 \)\(\,= \dfrac{{x + 3}}{7} + 1 + \dfrac{{x + 4}}{6} + 1\)

\( \Leftrightarrow \dfrac{{x + 10}}{9} + \dfrac{{x + 10}}{8} = \dfrac{{x + 10}}{7} \)\(\,+ \dfrac{{x + 10}}{6}\)

\( \Leftrightarrow \dfrac{{x + 10}}{9} + \dfrac{{x + 10}}{8} - \dfrac{{x + 10}}{7}\)\(\, - \dfrac{{x + 10}}{6}=0\)

\( \Leftrightarrow \left( {x + 10} \right)\left( {\dfrac{1}{9} + \dfrac{1}{8} - \dfrac{1}{7} - \dfrac{1}{6}} \right) = 0{\kern 1pt}\)\( \;(*)\)

Vì \(\dfrac{1}{9} < \dfrac{1}{7};\dfrac{1}{8} < \dfrac{1}{6}\) nên \(\dfrac{1}{9} + \dfrac{1}{8} - \dfrac{1}{7} - \dfrac{1}{6} < 0\)

 \((*) \Leftrightarrow   x+10 = 0 \)

\(\Leftrightarrow  x= -10 \)

Vậy phương trình có nghiệm duy nhất \(x = -10\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.


Gửi bài