Bài 32 trang 82 Vở bài tập toán 7 tập 2>
Giải bài 32 trang 82, 83 VBT toán 7 tập 2. Cho góc xOy khác góc bẹt. Trên tia Ox lấy hai điểm A và B, trên tia Oy lấy hai điểm C và D sao cho OA = OC; OB = OD...
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Cho góc \(xOy\) khác góc bẹt. Trên tia \(Ox\) lấy hai điểm \(A\) và \(B\), trên tia \(Oy\) lấy hai điểm \(C\) và \(D\) sao cho \(OA = OC, OB = OD.\) Gọi \(I\) là giao điểm của hai đoạn thẳng \(AD\) và \(BC.\) Chứng minh rằng:
a) \(BC = AD\)
b) \(IA = IC, IB = ID\)
c) Tia \(OI\) là tia phân giác của góc \(xOy\).
Phương pháp giải - Xem chi tiết
Chứng minh dựa vào các tam giác bằng nhau.
Lời giải chi tiết
a) Xét hai tam giác \(OAD\) và \(OCB\).
Ta có \(OA = OC\) (gt); \(OD = OB\) (gt), góc \(O\) chung
Vậy \(∆AOD = ∆COB\) (c.g.c)
suy ra \(AD = BC\) (hai cạnh tương ứng).
b) Xét hai tam giác \(AIB\) và \(CID\). Ta có (theo gt)
\(AB = OB - OA = OD - OC = CD.\)
Mặt khác, do \(∆AOD = ∆COB\) (câu a) suy ra \(\widehat{ABI} = \widehat{CDI}\) và \(\widehat{OAI} = \widehat{OCI}\). Từ \(\widehat{OAI} = \widehat{OCI}\) suy ra \(\widehat{BAI} = \widehat{DCI}\) (cặp góc kề bù với các góc bằng nhau)
Vậy \(∆AIB = ∆CID\) (g.c.g) suy ra \( IC = IA\) và \(ID = IB\) (hai cạnh tương ứng)
c) Ta có \( ∆OBI = ∆ODI\) (c.c.c), suy ra \(\widehat{AOI} = \widehat{COI}\).
Hơn nữa, hiển nhiên \(I\) nằm bên trong góc \(xOy\). Vậy \(OI\) là tia là phân giác của \(\widehat{xOy}\).
Loigiaihay.com


- Bài 33 trang 83 Vở bài tập toán 7 tập 2
- Bài 34 trang 83 Vở bài tập toán 7 tập 2
- Bài 31 trang 82 Vở bài tập toán 7 tập 2
- Bài 30 trang 81 Vở bài tập toán 7 tập 2
- Bài 29 trang 80 Vở bài tập toán 7 tập 2
>> Xem thêm