Bài 1.52 trang 25 SBT giải tích 12>
Giải bài 1.52 trang 25 sách bài tập giải tích 12. Tiệm cận đứng và ngang của đồ thị hàm số...
Đề bài
Tiệm cận đứng và ngang của đồ thị hàm số \(y = - \dfrac{3}{{x - 2}}\) là:
A. \(x = 2,y = 0\) B. \(x = 0,y = 2\)
C. \(x = 1,y = 1\) D. \(x = - 2,y = - 3\)
Phương pháp giải - Xem chi tiết
Sử dụng lý thuyết:
- Tiệm cận đứng: Đường thẳng \(x = {x_0}\) được gọi là tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\) nếu nó thỏa mãn một trong 4 điều kiện sau: \(\left[ \begin{array}{l}\mathop {\lim }\limits_{x \to x_0^ + } y = + \infty \\\mathop {\lim }\limits_{x \to x_0^ + } y = - \infty \\\mathop {\lim }\limits_{x \to x_0^ - } y = + \infty \\\mathop {\lim }\limits_{x \to x_0^ - } y = - \infty \end{array} \right.\)
- Tiệm cận ngang: Đường thẳng \(y = {y_0}\) được gọi là tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\) nếu nó thỏa mãn một trong 2 điều kiện sau: \(\left[ \begin{array}{l}\mathop {\lim }\limits_{x \to + \infty } y = {y_0}\\\mathop {\lim }\limits_{x \to - \infty } y = {y_0}\end{array} \right.\)
Lời giải chi tiết
Ta có: \(\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - \dfrac{3}{{x - 2}}} \right) = - \infty \) nên \(x = 2\) là đường tiệm cận đứng.
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \left( { - \dfrac{3}{{x - 2}}} \right) = 0\) nên \(y = 0\) là đường tiệm cận ngang.
Chọn A.
Loigiaihay.com
- Bài 1.53 trang 25 SBT giải tích 12
- Bài 1.54 trang 25 SBT giải tích 12
- Bài 1.55 trang 25 SBT giải tích 12
- Bài 1.51 trang 25 SBT giải tích 12
- Bài 1.50 trang 25 SBT giải tích 12
>> Xem thêm