Đề kiểm tra 45 phút (1 tiết) - Đề số 1 – Chương IV - Giải tích 12

Bình chọn:
4.9 trên 7 phiếu

Đáp án và lời giải chi tiết Đề kiểm tra 45 phút (1 tiết) - Đề số 1 – Chương IV - Giải tích 12.

Đề bài

Câu 1. Tìm tập nghiệm S của phương trình \({z^3} + {z^2} - 2 = 0\) trên trường số phức.

A. \(S = \{  - 1 - i,\, - 1 + i\} \).              

B. \(S = \{ 1,\,1 - i,\,1 + i\} \).

C. \(S = \{ 1,\, - 1 - i,\, - 1 + i\} \).     

D. \(S = \{ 1\} \).

Câu 2. Tính mô đun của số phức \(z\dfrac{{1 + 2i}}{{1 - i}}\).

A. \(|z| = \dfrac{{\sqrt 5 }}{2}\).     

B. \(|z| = \sqrt {10} \).

C. \(|z| = \dfrac{5}{2}\).              

D. \(|z| = \dfrac{{\sqrt {10} }}{2}\).                                        

Câu 3. Số phức \(z = \dfrac{{1 - i}}{{1 + i}} - 3 + 4i\) có số phức liên hợp là:

A. \(\overline z  =  - 3i\).  

B. \(\overline z  =  - 3\).

C. \(\overline z  =  - 3 + 3i\).                 

D. \(\overline z  =  - 3 - 3i\).

Câu 4. Trên mặt phẳng tọa độ, để tập hợp điểm biểu diễn các số phức z nằm trong phần gạch chéo ( kể cả biên ) ở  hình vẽ dưới đây thì điều kiện của z là:

 

A. \(|z| \le 1\) và phần ảo thuộc đoạn \(\left[ { - \dfrac{1}{2};\dfrac{1}{2}} \right]\).

B. \(|z| \le \dfrac{1}{2}\)và phần thực thuộc đoạn \(\left[ { - \dfrac{1}{2};\dfrac{1}{2}} \right]\).

C. \(|z| \le \dfrac{1}{2}\) và phần ảo thuộc đoạn \(\left[ { - \dfrac{1}{2};\dfrac{1}{2}} \right]\).

D. \(|z| \le 1\) và phần thực thuộc đoạn \(\left[ { - \dfrac{1}{2};\dfrac{1}{2}} \right]\).

Câu 5. Mô đun của số phức z thỏa mãn \(z + \left( {2 + i} \right)\overline z  = 3 + 5i\) là:

A. \(\sqrt {17} \)                       B. \(\sqrt {15} \) 

C. \(\sqrt {13} \)                        D. \(\sqrt {14} \).

Câu 6. Trong tập số phức C, chọn phát biểu đúng .

A. \(z + \overline z \) là số thuần ảo. 

B. \(\overline {{z_1} + {z_2}}  = \overline {{z_1}}  + \overline {{z_2}} \).

C. \({z^2} - {\left( {\overline z } \right)^2} = 4ab\).    

 D. \(|{z_1} + {z_2}| = |{z_1}| + |{z_2}|\).

Câu 7. Gọi \({z_1}\,,\,{z_2}\) lần lượt là nghiệm của phương trình \({z^2} + 2z + 10 = 0\). Tính \(|{z_1}{|^2} + |{z_2}{|^2}\).

A. 20                             B. 50 

C. 100                           D. 15                            

Câu 8. Cho số phức z = 2 + 3i. Giá trị của \(|2iz - \overline z |\) bằng :

A. 15                             B. \(\sqrt {15} \)  

C. 113                            D. \(\sqrt {113} \).

Câu 9. Trên mặt phẳng tọa độ, điểm biểu diễn của số phức z = - 5  – 6i  là điểm nào sau đây ?

A. P(5 ; - 6).                   B. Q(5 ; 6).

C. M(- 5 ; 6).                  D. N(- 5 ; - 6 ).

Câu 10. Tìm  số phưc liên hợp của số phức \(z = 1 - 9i\).

A. \(\overline z  =  - 1 - 9i\).                

B. \(\overline z  =  - 1 + 9i\).

C. \(\overline z  = 1 - 9i\).                  

D. \(\overline z  = 1 + 9i\).

Câu 11. Số phức z là số thực nếu:

A. a = 0.                    B. b = 0.

C.  i = 0.                    D. a. b = 0.

Câu 12. Các số thực x , y thỏa mãn \(\dfrac{{x - 3}}{{3 + i}} + \dfrac{{y - 3}}{{3 - i}} = i\). Khi đó tổng T = x + y bằng :

A. 4                            B. 5                  

C. 6                             D. 7

Câu 13. Cho biểu thức \(|z| + z = 3 + 4i\). Số phức z là :

A. \(z = \dfrac{7}{6} - 4i\). 

B. \(z = \dfrac{6}{7} + 4i\).

C. \(z =  - \dfrac{7}{6} - 4i\).            

D. \(z =  - \dfrac{7}{6} + 4i\).

Câu 14. Cho số phức z thỏa mãn \(|z - 2 - 2i| = 1\). Số phức z  - i có mô đun nhỏ nhất là:
A. \(\sqrt 5  - 1\).

B. \(1 - \sqrt 5 \).

C. \(\sqrt 5  + 1\).                                

D. \(\sqrt 5  + 2\).

Câu 15. Cho hai số phức \({z_1} = 1 + 2i\,,\,\,{z_2} = 2 - 3i\). Phần thực và phần ảo của số phức \(w = 3{z_1} - 2{z_2}\) là:

A. 1 và 12.                  

B. – 1 và 12.

C. – 1 và 12i.                

D. 1 và 12i.

Câu 16. Cho số phức z thỏa mãn \(|z + 3| + |z - 3| = 10\). Giá trị nhỏ nhất của \(|z|\) là:

A. 3                            B. 4               

C. 5                            D. 6

Câu 17.  Nghiệm của phương trình \(2{z^4} + {z^2} - 1 = 0\) trên tập số phức là:

A. \(z =  \pm i\).   

B. \(\left[ \begin{array}{l}z = \dfrac{{\sqrt 2 }}{2}\\z = i\end{array} \right.\).

C. \(\left[ \begin{array}{l}z =  \pm \dfrac{i}{{\sqrt 2 }}\\z =  \pm i\end{array} \right.\).   

D. \(\left[ \begin{array}{l}z =  \pm \dfrac{1}{{\sqrt 2 }}\\z =  \pm i\end{array} \right.\).

Câu 18. Tập hợp các điểm biểu diễn số phức z thỏa mãn \(|z| = |2 + 2i|\) là:

A. Đường tròn bán kính \(2\sqrt 2 \).

B. Đường tròn bán kính 4.

C. Đường tròn bán kính 2.

D. Đường tròn bán kính \(4\sqrt 2 \).

Câu 19. Số phức z có mô đun r và acgumen \(\varphi \) thì có dạng lượng giác là:

A. \(z = r\left( {\cos \varphi  + i\sin \varphi } \right)\).  

B. \(z = r\left( {\cos \varphi  - i\sin \varphi } \right)\).

C. \(z = r\left( {\sin \varphi  + i\cos \varphi } \right)\). 

D. \(z = r\left( {\sin \varphi  - i\cos \varphi } \right)\).

Câu 20. Tổng của hai số phức \({z_1} = 1 - 2i\,,\,\,{z_2} = 2 + 3i\) là:

A. \(2 - 5i\).          

B. 2 + 5i.

C. 3 + i.                   

D. 3 + 5i.

Câu 21. Gọi \(\varphi \) là 1 acgumen cảu số phức z có biểu diễn là \(M\left( {\dfrac{1}{2};\dfrac{{\sqrt 3 }}{2}} \right)\)nằm trên đường tròn đơn vị, số đo nào sau đây có thể là một acgumen của z ?

A. \(\dfrac{\pi }{2}\)                          B. \(\dfrac{\pi }{3}\) 

C. \(\dfrac{\pi }{4}\)                           D. \(\dfrac{\pi }{6}\).

Câu 22. Cho số phức z thỏa mãn \(|z + 1 - i|\,\, \le \,3\)là số thực. Tập hợp điểm M biểu diễn số phức z là:
A. Đường tròn .  

B. Đường thẳng .

C. Hình tròn .        

D. Một điểm duy nhất.

Câu 23. Cho hai số phức \({z_1} = 4 + 5i\,,\,\,{z_2} = 1 + 2i\). Tìm khẳng định  đúng ?

A. \({z_1} + {z_2} = 5 + 7i\).        

B. \({z_1} - {z_2} = 3 + 4i\).

C. \({z_1}.{z_2} = 10 + 3i\).          

D. \({z_1}.{z_2} = 20 + 5i\).

Câu 24. Tìm điểm M biểu diễn số phức z = 2 + 2i.

A. M ( 2 ; - 2).     

B. M (2 ; 2).

C. M ( -2 ; 2).                     

D. M (-2  ; 2).

Câu 25. Cho số phức z có dạng lượng giác \(z = 4\left( {\cos \left( { - \dfrac{\pi }{2}} \right) + i\sin \left( { - \dfrac{\pi }{2}} \right)} \right)\). Dạng đại số của z là :

A. z = 4.           

B. z = - i.

C. z = 4i.              

D. z = - 4i.

 

Lời giải chi tiết

1

2

3

4

5

C

D

D

A

C

6

7

8

9

10

B

A

D

D

D

11

12

13

14

15

B

C

D

A

B

16

17

18

19

20

B

D

A

A

C

21

22

23

24

25

B

C

A

B

D

Lời giải chi tiết

Câu 1: (C)

 \(\begin{array}{l}{z^3} - {z^2} - 2 = 0\\ \Leftrightarrow \left( {z - 1} \right)\left( {{z^2} + 2z + 2} \right)\\ \Leftrightarrow \left[ \begin{array}{l}z - 1 = 0\\{z^2} + 2z + 2 = 0\end{array} \right.\end{array}\)\(\)

Giải pt (2)

Ta có  \(\Delta  = {(b')^2} - a.c = 1 - 2 =  - 1 = {i^2}\)

\(\Delta \) có hai căn bậc hai là i và – i

Nghiệm của pt (2) là \({x_1} =  - 1 - {\rm{ }}i\) và   

Tập nghiệm S trên trường số phức là: S={ 1, -1- i, -1+ i}

Câu 2: (D)

 \(\begin{array}{l}z = \dfrac{{1 + 2i}}{{1 - i}} = \dfrac{{\left( {1 + 2i} \right).\left( {1 + i} \right)}}{{\left( {1 - i} \right)\left( {1 + i} \right)}}\\\,\,\,\, = \dfrac{{1 + 3i + 2.{i^2}}}{{1 - {i^2}}} = \dfrac{{ - 1 + 3.i}}{2}\\\,\,\,\, = \dfrac{{ - 1}}{2} + \dfrac{3}{2}i\\ \Rightarrow \left| z \right| = \sqrt {{{\left( { - \dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{3}{2}} \right)}^2}}  = \dfrac{{\sqrt {10} }}{2}\end{array}\)

Câu 3: (D) 

\(\begin{array}{l}z = \dfrac{{1 - i}}{{1 + i}} - 3 + 4i\\\,\,\,\,\, = \dfrac{{{{\left( {1 - i} \right)}^2}}}{{1 - {i^2}}} - 3 + 4i\\\,\,\,\,\, =  - i - 3 + 4i =  - 3 + 3i\end{array}\)

Số phức liên hợp của z là: \(\overline z  =  - 3 - 3i\)

Câu 4: (A)

Câu 5: (C)

Đặt z = a + bi      \(a,b \in \mathbb{Z}\)

\(\begin{array}{l}z + \left( {2 + i} \right)\overline z  = 3 + 5i\\ \Leftrightarrow \left( {a + bi} \right) + \left( {2 + i} \right)\left( {a - bi} \right) = 3 + 5i\\ \Leftrightarrow 3a + b + ai - bi = 3 + 5i\\ \Leftrightarrow 3a + b + \left( {a - b} \right)i = 3 + 5i\\ \Leftrightarrow \left\{ \begin{array}{l}3a + b = 3\\a - b = 5\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b =  - 3\end{array} \right.\left( {tm} \right)\\ \Rightarrow z = 2 - 3i\\ \Rightarrow \left| z \right| = \sqrt {{2^2} + {{\left( { - 3} \right)}^2}}  = \sqrt {13} \end{array}\)

Câu 6: (B)

Câu 7: (A)                       \({z^2} + 2z + 10 = 0\)

Có \(\Delta ' = {\left( {b'} \right)^2} - ac = 1 - 10 =  - 9 = {\left( {3i} \right)^2}\)

\(\Delta \) có hai căn bậc hai là 3i và – 3i

Phương trình có hai nghiệm \({z_1} = {\rm{ }} - 1{\rm{ }} + {\rm{ }}3i\) và \({z_2} = {\rm{ }} - 1{\rm{ }}--{\rm{ }}3i\)

\(\begin{array}{l}\left| {{z_1}} \right| = \left| {{z_2}} \right| = \sqrt {10} \\ \Rightarrow {\left| {{z_1}} \right|^2} = {\left| {{z_2}} \right|^2} = 10\\ \Rightarrow {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2} = 20\end{array}\)

Câu 8: (D)       

\(\begin{array}{l}z{\rm{ }} = {\rm{ }}2{\rm{ }} + {\rm{ }}3i\\ \Rightarrow 2iz - \overline z  = {\rm{ }}2i\left( {2{\rm{ }} + 3i} \right){\rm{ }}--{\rm{ }}\left( {2{\rm{ }}--{\rm{ }}3i} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 4i - 6 - 2 + 3i\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, =  - 8 + 7i\end{array}\)

Câu 9: (D)

Câu 10: (D)

Câu 11: (B)

Câu 12: (C)

\(\begin{array}{l}\dfrac{{x - 3}}{{3 + i}} + \dfrac{{y - 3}}{{3 - i}} = i\\ \Leftrightarrow \left( {x - 3} \right)\left( {3 - i} \right) + \left( {y - 3} \right)\left( {3 + i} \right) = i\left( {3 - i} \right)\left( {3 + i} \right)\\ \Leftrightarrow 3\left( {x - 3} \right) - \left( {x - 3} \right)i + 3\left( {y - 3} \right) + \left( {y - 3} \right)i = 10i\\ \Leftrightarrow 3\left( {x + y - 6} \right) + \left( {y - x} \right)i = 10i\\ \Leftrightarrow \left\{ \begin{array}{l}x + y - 6 = 0\\y - x = 10\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x + y = 6\\y - x = 10\end{array} \right.\end{array}\)

Câu 13: (D)                                       

Đặt  \(z = a + bi;\,\,\,\,a,b \in \mathbb{Z}\)    

\(\begin{array}{l}|z| + z = 3 + 4i\\ \Rightarrow \sqrt {{a^2} + {b^2}}  + a + bi = 3 + 4i\\\left\{ \begin{array}{l}\sqrt {{a^2} + {b^2}}  + a = 3{\rm{   (1)}}\\b = 4{\rm{                   (2)}}\end{array} \right.\end{array}\)       ­­

Thay (2) v ào (1) ta được:

 \(\begin{array}{l}\sqrt {{a^2} + {{16}^2}}  + a = 3\\ \Leftrightarrow \sqrt {{a^2} + {{16}^2}}  = 3 - a\\ \Leftrightarrow \left\{ \begin{array}{l}a \le 3\\6a =  - 7\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}a \le 3\\a = \dfrac{{ - 7}}{6}\end{array} \right.\\ \Leftrightarrow a = \dfrac{{ - 7}}{6}\\ \Rightarrow z =  - \dfrac{7}{6} + 4i\end{array}\)

Câu 14: (A)                           

Đặt z = x +yi                   M(x,y)      \(x,y \in \mathbb{Z}\)

\(\begin{array}{l}|z - 2 - 2i| = 1\\ \Leftrightarrow |x + yi - 2 - 2i| = 1\\ \Leftrightarrow \left| {\left( {x - 2} \right) + \left( {y - 2} \right)i} \right| = 1\\ \Leftrightarrow \sqrt {{{\left( {x - 2} \right)}^2} + {{(y - 2)}^2}}  = 1\\ \Leftrightarrow {\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 1\end{array}\)=1

Điểm M biểu diễn cho số phức z nằm trên đường tròn tâm I(2,2), bán kính r = 1

Ta lại có:  \(\left| {z--i} \right| = \left| {x + yi--i} \right| \)\(\,= \left| {x + \left( {y--1} \right)} \right| = \sqrt {{x^2} + {{(y - 1)}^2}} \)

Lấy H(0, 1) suy ra \(HM = \sqrt {{x^2} + {{(y - 1)}^2}} \)

Do M chạy trên đường tròn, H cố định nên MH nhỏ nhất khi M là giao điểm của HI với đường tròn.

Có H(0,1) , I(2,2) nên \(\overrightarrow {HI}  = \left( {2;1} \right)\) = (2,1)

Pt đường thẳng HI: (1) \(\left\{ \begin{array}{l}x = 2t\\y = 1 + t\end{array} \right.\)

Mặt khác, HI giao với đường tròn tại M nên thay (1) vào pt đường tròn ta được :

 

\(\begin{array}{l}{\left( {2t - 2} \right)^2} + {\left( {t - 1} \right)^2} = 1\\ \Leftrightarrow 5{\left( {t - 1} \right)^2} = 1\\ \Leftrightarrow {\left( {t - 1} \right)^2} = \dfrac{1}{5}\\ \Leftrightarrow \left[ \begin{array}{l}t - 1 = \dfrac{1}{{\sqrt 5 }}\\t - 1 =  - \dfrac{1}{{\sqrt 5 }}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}t = 1 + \dfrac{1}{{\sqrt 5 }}\\t = 1 - \dfrac{1}{{\sqrt 5 }}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}{M_1} = \left( {2 + \dfrac{2}{{\sqrt 5 }},2 + \dfrac{1}{{\sqrt 5 }}} \right)\\{M_2} = \left( {2 - \dfrac{2}{{\sqrt 5 }},2 - \dfrac{1}{{\sqrt 5 }}} \right)\end{array} \right.\\\\\end{array}\)

Có \(H{M_1} = \sqrt 5  + 1;\,\,H{M_2} = \sqrt 5  - 1\)

\(|z - i{|_{\min }} \Leftrightarrow |z - i| = H{M_2} = \sqrt 5  - 1\)  với \({M_2} = \left( {2 - \dfrac{2}{{\sqrt 5 }},2 - \dfrac{1}{{\sqrt 5 }}} \right)\)

Câu 15: (B)                           

\(\begin{array}{l}w = 3{z_1}--2{z_2}\\\,\,\,\,\,\, = 3\left( {1{\rm{ }} + {\rm{ }}2i} \right)--2\left( {2--3i} \right)\\\,\,\,\,\,\, = 3 + 6i - 4 + 6i\\\,\,\,\,\,\, =  - 1 + 12i\end{array}\)

Phần thực: -1 , phần ảo: 12

Câu 16: (B)                                   Đặt \(z = a + bi;\,\,\,\,a,b \in \mathbb{Z}\)

\(\begin{array}{l}\left| {z + 3} \right| + \left| {z--3} \right| = 10\\ \Leftrightarrow |a + bi + 3| + |a + bi - 3| = 10\\ \Leftrightarrow \sqrt {{{(a + 3)}^2} + {b^2}}  + \sqrt {{{(a - 3)}^2} + {b^2}}  = 10\end{array}\)

Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki ta có:

\(10 = \sqrt {{{(a + 3)}^2} + {b^2}}  + \sqrt {{{(a - 3)}^2} + {b^2}}  \)\(\,\le \sqrt {2{\rm{[}}{{(a + 3)}^2} + {b^2} + {{(a - 3)}^2} + {b^2}{\rm{]}}}\)

\(\begin{array}{l} \Leftrightarrow \sqrt {2\left( {2{a^2} + 2{b^2} + 18} \right)}  \ge 10\\ \Leftrightarrow {a^2} + {b^2} + 9 \ge 25\\ \Leftrightarrow {a^2} + {b^2} \ge 16\\ \Leftrightarrow \sqrt {{a^2} + {b^2}}  \ge 4\\ \Leftrightarrow |z| \ge 4\\ \Leftrightarrow |z{|_{\min }} = 4\end{array}\)

Câu 17: (D)         

\(\begin{array}{l}2{z^4} + {z^2} - 1 = 0\\\Delta  = {b^2} - 4ac = 1 + 4.2 = 9\end{array}\)

Nghiệm của phương trình là:

\(\begin{array}{l}\left[ \begin{array}{l}{z^2} = \dfrac{{ - 1 - 3}}{4} =  - 1 = {i^2}\\{z^2} = \dfrac{{ - 1 + 3}}{4} = \dfrac{1}{2}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}z =  \pm i\\z =  \pm \dfrac{1}{{\sqrt 2 }}\end{array} \right.\end{array}\)

Câu 18: (A)                 

\(\left| z \right| = \left| {2 + 2i} \right| = 2\sqrt 2 \)

Đặt z= a+ bi

\(\begin{array}{l}|z| = 2\sqrt 2 \\ \Leftrightarrow |a + bi| = 2\sqrt 2 \\ \Leftrightarrow \sqrt {{a^2} + {b^2}}  = 2\sqrt 2 \end{array}\)

Tập hợp các điểm biểu diễn cho số phức z  là đường tròn có tâm O(0,0), bán kính \(r = 2\sqrt 2 \)

Câu 19: (A)

Câu 20: (C)

\({z_1} + {z_2} = 1--2i + 2 + 3i = 3 + i\)

Câu 21: (B)

Câu 22: (C)         Đặt z = x + yi

 \(\begin{array}{l}|z + 1 - i| \le 3\\ \Leftrightarrow |x + yi + 1 - i| \le 3\\ \Leftrightarrow \left| {\left( {x + 1} \right) + \left( {y - 1} \right) \le 3} \right|\\ \Leftrightarrow \sqrt {{{\left( {x + 1} \right)}^2} + {{\left( {y - 1} \right)}^2}}  \le 3\end{array}\)

Điểm biểu diễ số phức z là một hình tròn tâm I(-1,1), bán kính \(r = 3\)

Câu 23: (A)   \({z_1} + {z_2} = 4 + 5i + 1 + 2i = 5 + 7i\)

Câu 24: (B)

Câu 25: (D)

Loigiaihay.com

 

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Đề kiểm tra 45 phút (1 tiết) - Đề số 2 – Chương IV -  Giải tích 12 Đề kiểm tra 45 phút (1 tiết) - Đề số 2 – Chương IV - Giải tích 12

Đáp án và lời giải chi tiết Đề kiểm tra 45 phút (1 tiết) - Đề số 2 – Chương IV - Giải tích 12.

Xem chi tiết
Đề kiểm tra 45 phút (1 tiết) - Đề số 3 – Chương IV -  Giải tích 12 Đề kiểm tra 45 phút (1 tiết) - Đề số 3 – Chương IV - Giải tích 12

Đáp án và lời giải chi tiết Đề kiểm tra 45 phút (1 tiết) - Đề số 3 – Chương IV - Giải tích 12.

Xem chi tiết
Đề kiểm tra 45 phút (1 tiết)  - Đề số 4 – Chương IV  - Giải tích 12 Đề kiểm tra 45 phút (1 tiết) - Đề số 4 – Chương IV - Giải tích 12

Đáp án và lời giải chi tiết Đề kiểm tra 45 phút (1 tiết) - Đề số 4 – Chương IV - Giải tích 12.

Xem chi tiết
Đề kiểm tra 45 phút (1 tiết) - Đề số 5 – Chương IV -  Giải tích 12 Đề kiểm tra 45 phút (1 tiết) - Đề số 5 – Chương IV - Giải tích 12

Đáp án và lời giải chi tiết Đề kiểm tra 45 phút (1 tiết) - Đề số 5 – Chương IV - Giải tích 12.

Xem chi tiết
Bài 1 trang 9 SGK Giải tích 12 Bài 1 trang 9 SGK Giải tích 12

Giải bài 1 trang 9 SGK Giải tích 12. Xét sự đồng biến, nghịch biến của các hàm số:

Xem chi tiết
Bài 2 trang 10 SGK Giải tích 12 Bài 2 trang 10 SGK Giải tích 12

Giải bài 2 trang 10 SGK Giải tích 12. Tìm các khoảng đơn điệu của các hàm số:

Xem chi tiết
Bài 1 trang 18 SGK Giải tích 12 Bài 1 trang 18 SGK Giải tích 12

Giải bài 1 trang 18 SGK Giải tích 12. Áp dụng quy tắc I, hãy tìm các điểm cực trị của hàm số sau:

Xem chi tiết
Bài 5 trang 10 SGK Giải tích 12 Bài 5 trang 10 SGK Giải tích 12

Giải bài 5 trang 10 SGK Giải tích 12. Chứng minh các bất đẳng thức sau:

Xem chi tiết

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.