Câu 5.25 trang 183 sách bài tập Đại số và Giải tích 11 Nâng cao


Giải phương trình biết

Lựa chọn câu để xem lời giải nhanh hơn

Giải phương trình \(f'\left( x \right) = 0\) biết

LG a

\(f\left( x \right) = \sqrt 3 \cos x + \sin x - 2x - 5\)

Lời giải chi tiết:

Với mọi \(x \in R\) ta có

\(\eqalign{& f'\left( x \right) =  - \sqrt 3 \sin x + \cos x - 2  \cr& f'\left( x \right) = 0 \Leftrightarrow {1 \over 2}\cos x - {{\sqrt 3 } \over 2}\sin x = 1\cr& \Leftrightarrow \cos x.\cos {\pi  \over 3} - \sin x.\sin {\pi  \over 3} = 1  \cr&  \Leftrightarrow \cos \left( {x + {\pi  \over 3}} \right) = 1 \Leftrightarrow x + {\pi  \over 3} = k2\pi  \cr&\Leftrightarrow x =  - {\pi  \over 3} + k2\pi \,\,\left( {k \in Z} \right) \cr} \)

LG b

\(f\left( x \right) = {{2\cos 17x} \over {17}} - {{\sqrt 3 \sin 5x} \over 5} + {{\cos 5x} \over 5} + 2\)

Lời giải chi tiết:

 Với mọi \(x \in R\) ta có

\(\eqalign{& f'\left( x \right) =  - 2\sin 17x - \sqrt 3 \cos 5x - \sin 5x  \cr& f'\left( x \right) = 0\cr& \Leftrightarrow \sin 17x + \left( {{{\sqrt 3 } \over 2}\cos 5x +  {1  \over 2}\sin 5x} \right) = 0  \cr&  \Leftrightarrow \sin 17x + \left( {\sin {\pi  \over 3}\cos 5x + \cos {\pi  \over 3}\sin 5x} \right) = 0  \cr&  \Leftrightarrow \sin \left( {5x + {\pi  \over 3}} \right) = \sin \left( { - 17x} \right) \cr} \)

 

\( \Leftrightarrow \left[ \matrix{5x + {\pi  \over 3} =  - 17x + k2\pi  \hfill \cr5x + {\pi  \over 3} = \pi  + 17x + k2\pi  \hfill \cr}  \right. \Leftrightarrow \left[ \matrix{x =  - {\pi  \over {66}} + {{k\pi } \over {11}} \hfill \cr x =  - {\pi  \over {18}} - {{k\pi } \over 6} \hfill \cr}  \right.\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí