Bài 1.22 trang 10 SBT Đại số và Giải tích 11 Nâng cao


Giải bài 1.22 trang 10 sách bài tập Đại số và Giải tích 11 Nâng cao. Tìm tập xác định của hàm số ...

Đề bài

Tìm tập xác định của hàm số \(y = {{3\sin 2x + cosx} \over {\cos \left( {4x + {{2\pi } \over 5}} \right) + \cos \left( {3x - {\pi  \over 4}} \right)}}\)

Lời giải chi tiết

Ta có: \(\cos \left( {4x + {{2\pi } \over 5}} \right) + \cos \left( {3x - {\pi  \over 4}} \right) = 0 \)

\(\Leftrightarrow 2\cos \left( {{{7x} \over 2} + {{3\pi } \over {40}}} \right)\cos \left( {{x \over 2} + {{13\pi } \over {40}}} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}
\cos \left( {\frac{{7x}}{2} + \frac{{3\pi }}{{40}}} \right) = 0\\
\cos \left( {\frac{x}{2} + \frac{{13\pi }}{{40}}} \right) = 0
\end{array} \right.\)

+) \(\cos \left( {{{7x} \over 2} + {{3\pi } \over {40}}} \right) = 0\)

\(\Leftrightarrow {{7x} \over 2} + {{3\pi } \over {40}} = {\pi  \over 2} + k\pi \)

\(\Leftrightarrow x = {{17\pi } \over {140}} + k{{2\pi } \over 7}\)

+) \(\cos \left( {{x \over 2} + {{13\pi } \over {40}}} \right) = 0 \)

\(\Leftrightarrow {x \over 2} + {{13\pi } \over {40}} = {\pi  \over 2} + k\pi \)

\(\Leftrightarrow x = {{7\pi } \over {20}} + k2\pi \)

Vậy điều kiện xác định của hàm số đã cho là \(\cos \left( {4x + {{2\pi } \over 5}} \right) + \cos \left( {3x - {\pi  \over 4}} \right) \ne 0\) tức là

 \(x \ne {{17\pi } \over {140}} + k{{2\pi } \over 7}\left( {k \in Z} \right)\) và \(x \ne {{7\pi } \over {20}} + k2\pi \left( {k \in Z} \right)\)

Vậy TXĐ: \(D = R\backslash \left\{ {\frac{{17\pi }}{{140}} + \frac{{k2\pi }}{7},\frac{{7\pi }}{{20}} + k2\pi ,k \in Z} \right\}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài