Bài 1.22 trang 10 SBT Đại số và Giải tích 11 Nâng cao


Giải bài 1.22 trang 10 sách bài tập Đại số và Giải tích 11 Nâng cao. Tìm tập xác định của hàm số ...

Đề bài

Tìm tập xác định của hàm số \(y = {{3\sin 2x + cosx} \over {\cos \left( {4x + {{2\pi } \over 5}} \right) + \cos \left( {3x - {\pi  \over 4}} \right)}}\)

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Ta có: \(\cos \left( {4x + {{2\pi } \over 5}} \right) + \cos \left( {3x - {\pi  \over 4}} \right) = 0 \)

\(\Leftrightarrow 2\cos \left( {{{7x} \over 2} + {{3\pi } \over {40}}} \right)\cos \left( {{x \over 2} + {{13\pi } \over {40}}} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}
\cos \left( {\frac{{7x}}{2} + \frac{{3\pi }}{{40}}} \right) = 0\\
\cos \left( {\frac{x}{2} + \frac{{13\pi }}{{40}}} \right) = 0
\end{array} \right.\)

+) \(\cos \left( {{{7x} \over 2} + {{3\pi } \over {40}}} \right) = 0\)

\(\Leftrightarrow {{7x} \over 2} + {{3\pi } \over {40}} = {\pi  \over 2} + k\pi \)

\(\Leftrightarrow x = {{17\pi } \over {140}} + k{{2\pi } \over 7}\)

+) \(\cos \left( {{x \over 2} + {{13\pi } \over {40}}} \right) = 0 \)

\(\Leftrightarrow {x \over 2} + {{13\pi } \over {40}} = {\pi  \over 2} + k\pi \)

\(\Leftrightarrow x = {{7\pi } \over {20}} + k2\pi \)

Vậy điều kiện xác định của hàm số đã cho là \(\cos \left( {4x + {{2\pi } \over 5}} \right) + \cos \left( {3x - {\pi  \over 4}} \right) \ne 0\) tức là

 \(x \ne {{17\pi } \over {140}} + k{{2\pi } \over 7}\left( {k \in Z} \right)\) và \(x \ne {{7\pi } \over {20}} + k2\pi \left( {k \in Z} \right)\)

Vậy TXĐ: \(D = R\backslash \left\{ {\frac{{17\pi }}{{140}} + \frac{{k2\pi }}{7},\frac{{7\pi }}{{20}} + k2\pi ,k \in Z} \right\}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí