Bài 39 trang 93 SGK Đại số và Giải tích 12 Nâng cao


Tìm x, biết:

Lựa chọn câu để xem lời giải nhanh hơn

Tìm x, biết:

LG a

\({\log _x}27 = 3\)

Phương pháp giải:

Áp dụng: \({\log _a}b = c \Leftrightarrow b = {a^c}.\)

Lời giải chi tiết:

Điều kiện: x>0 và \(x \ne 1\)

\({\log _x}27 = 3 \Leftrightarrow {x^3} = 27 = {3^3}\)

\(\Leftrightarrow x = 3\) (TM)

LG b

\({\log _x}{1 \over 7} =  - 1\)

Lời giải chi tiết:

Điều kiện: x>0 và \(x \ne 1\)

\({\log _x}{1 \over 7} =  - 1 \)\( \Leftrightarrow {x^{ - 1}} = \frac{1}{7}\)

\( \Leftrightarrow \frac{1}{x} = \frac{1}{7} \Leftrightarrow x = 7\) (TM)

LG c

\({\log _x}\sqrt 5  =  - 4\)

Lời giải chi tiết:

Điều kiện: x>0 và \(x \ne 1\)

\({\log _x}\sqrt 5  =  - 4 \Leftrightarrow {x^{ - 4}} = \sqrt 5\)

\(\begin{array}{l}
\Leftrightarrow {\left( {{x^{ - 4}}} \right)^{ - \frac{1}{4}}} = {\left( {\sqrt 5 } \right)^{ - \frac{1}{4}}}\\
\Leftrightarrow {x^{ - 4.\left( { - \frac{1}{4}} \right)}} = {\left( {{5^{\frac{1}{2}}}} \right)^{ - \frac{1}{4}}}\\
\Leftrightarrow {x^1} = {5^{\frac{1}{2}.\left( { - \frac{1}{4}} \right)}}\\
\Leftrightarrow x = {5^{ - \frac{1}{8}}}
\end{array}\)

Cách khác:

\(\begin{array}{l}
{\log _x}\sqrt 5 = - 4\\
\Leftrightarrow \frac{{{{\log }_{\sqrt 5 }}\sqrt 5 }}{{{{\log }_{\sqrt 5 }}x}} = - 4\\
\Leftrightarrow \frac{1}{{{{\log }_{\sqrt 5 }}x}} = - 4\\
\Leftrightarrow {\log _{\sqrt 5 }}x = - \frac{1}{4}\\
\Leftrightarrow x = {\left( {\sqrt 5 } \right)^{ - \frac{1}{4}}}\\
\Leftrightarrow x = {5^{ - \frac{1}{8}}}
\end{array}\)

Loigiaihay.com


Bình chọn:
3.5 trên 4 phiếu

Các bài liên quan: - Bài 3. Lôgarit

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài