Bài 35 trang 92 SGK Đại số và Giải tích 12 Nâng cao


Trong mỗi trường hợp sau, hãy tính

Lựa chọn câu để xem lời giải nhanh hơn

Trong mỗi trường hợp sau, hãy tính \({\log _a}x\) biết \({\log _a}b = 3,{\log _a}c =  - 2\):

a) \(x = {a^3}{b^2}\sqrt c ;\)

b) \(x = {{{a^4}\root 3 \of b } \over {{c^3}}}.\)

LG a

\(x = {a^3}{b^2}\sqrt c\)

Lời giải chi tiết:

\({\log _a}x = {\log _a}\left( {{a^3}{b^2}\sqrt c } \right)\)

\(\begin{array}{l}
= {\log _a}{a^3} + {\log _a}{b^2} + {\log _a}\sqrt c \\
= 3{\log _a}3 + 2{\log _a}b + {\log _a}{c^{\frac{1}{2}}}
\end{array}\)

\(= 3 + 2{\log _a}b + {1 \over 2}{\log _a}c \)

\(= 3 + 2.3 + {1 \over 2}\left( { - 2} \right) = 8\).

LG b

\(x = {{{a^4}\root 3 \of b } \over {{c^3}}}.\)

Lời giải chi tiết:

\({\log _a}x = {\log _a}\left( {{{{a^4}\root 3 \of b } \over {{c^3}}}} \right)\)

\(\begin{array}{l}
= {\log _a}\left( {{a^4}\sqrt[3]{b}} \right) - {\log _a}{c^3}\\
= {\log _a}{a^4} + {\log _a}\sqrt[3]{b} - {\log _a}{c^3}\\
= 4{\log _a}a + {\log _a}{b^{\frac{1}{3}}} - {\log _a}{c^3}
\end{array}\)

\( = 4 + {1 \over 3}{\log _a}b - 3{\log _a}c \)

\(= 4 + {1 \over 3}.3 - 3\left( { - 2} \right) = 11\).

Loigiaihay.com


Bình chọn:
3.8 trên 4 phiếu

Các bài liên quan: - Bài 3. Lôgarit

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài