Bài 16 trang 191 SGK Giải tích 12 Nâng cao


Đề bài

Đố vui. Trong mặt phẳng phức cho các điểm: O (gốc tọa độ), A biểu diễn  số 1, B biểu diễn số phức z không thực, A' biểu diễn số phức \(z'\ne 0\) và B' biểu diễn số phức zz'.

Hai tam giác OAB, OA'B' có phải là hai tam giác dồng dạng không?

Phương pháp giải - Xem chi tiết

Hai tam giác đồng dạng nếu có các cặp cạnh tương ứng tỉ lệ.

Lời giải chi tiết

Do z không phải là số thực nên các điểm O, A, B theo thứ tự biểu diễn các số 0, 1, z là các đỉnh của một tam giác.

Với \(z'\ne 0\), xét các điểm A', B' theo thứ tự biểu diễn các số z', zz' thì ta có: 

\({{OA'} \over {OA}} = {{|z'|} \over 1} = |z'|;\) \({{OB'} \over {OB}} = {{|zz'|} \over {|z|}} = |z'|,\) \({{A'B'} \over {AB}} = {{|zz' - z'|} \over {|z - 1|}} = |z'|\)

\(\dfrac{{OA'}}{{OA}} = \dfrac{{OB'}}{{OB}} = \dfrac{{A'B'}}{{AB}} = \left| {z'} \right| \ne 0\)

Vậy tam giác OA'B' đồng dạng với tam giác OAB (tỉ số đồng dạng bằng |z'|).

Cách khác:

Gọi z=a+bi (ab ≠ 0) z'=a'+b' i(a' b' ≠ 0)

Suy ra zz’ = (aa’ – bb’) (a’b +b’a)i

Ta có:

Do đó:

\(\dfrac{{OA'}}{{OA}} = \dfrac{{OB'}}{{OB}} = \dfrac{{A'B'}}{{AB}} = \left| {z'} \right| \ne 0\)

Vậy tam giác OAB đồng dạng với tam giác OA’B’.

  Loigiaihay.com


Bình chọn:
3.3 trên 4 phiếu

Các bài liên quan: - Bài 1. Số phức

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Hỏi bài