Bài 10 trang 190 SGK Đại số và Giải tích 12 Nâng cao


Đề bài

Chứng minh rằng với mọi số phức \(z \ne 1\), ta có: \(1 + z + {z^2} + ... + {z^9} = {{{z^{10}} - 1} \over {z - 1}}\).

Phương pháp giải - Xem chi tiết

Thực hiện phép nhân \(\left( {1 + z + {z^2} + ... + {z^9}} \right)\left( {z - 1} \right) \) suy ra đpcm.

Lời giải chi tiết

Ta có: \(\left( {1 + z + {z^2} + ... + {z^9}} \right)\left( {z - 1} \right) \\= z + {z^2} + ... + {z^{10}} \\- \left( {1 + z + {z^2} + ... + {z^9}} \right) \\= z + {z^2} + ... + {z^{10}}\\-1-z-z^2-...-z^9\\= {z^{10}} - 1\)

Vì \(z \ne 1\) nên chia hai vế cho \(z - 1\) ta được: \(1 + z + {z^2} + ... + {z^9} = {{{z^{10}} - 1} \over {z - 1}}\)

  Loigiaihay.com


Bình chọn:
3.4 trên 5 phiếu

Các bài liên quan: - Bài 1. Số phức

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.