Bài 9 trang 190 SGK Đại số và Giải tích 12 Nâng cao


Xác định tập hợp câc điểm reong mặt phẳng phức biểu diễn các số phức z thỏa mãn từng điều kiện sau:

Lựa chọn câu để xem lời giải nhanh hơn

 Xác định tập hợp câc điểm trong mặt phẳng phức biểu diễn các số phức \(z\) thỏa mãn từng điều kiện sau:

LG a

\(\left| {z - i} \right| = 1\)

Phương pháp giải:

Điểm M(x;y) biểu diễn số phức z=x+yi.

Lời giải chi tiết:

Giả sử z=x+yi, \(x,y\in R\)

Khi đó \(z - i = x + \left( {y - 1} \right)i\)

\(\left| {z - i} \right| = 1\)\( \Leftrightarrow {x^2} + {\left( {y - 1} \right)^2} = 1\).

Tập hợp các điểm M biểu diễn số phức z là đường tròn tâm \(I\left( {0,1} \right)\) bán kính \(1\).

LG b

\(\left| {{{z - i} \over {z + i}}} \right| = 1\)

Phương pháp giải:

Sử dụng công thức \(\left| {\dfrac{z}{{z'}}} \right| = \frac{{\left| z \right|}}{{\left| {z'} \right|}}\)

Lời giải chi tiết:

Giả sử z=x+yi, \(x,y\in R\).

Ta có:\(\left| {{{z - i} \over {z + i}}} \right| = 1 \) \( \Leftrightarrow \frac{{\left| {z - i} \right|}}{{\left| {z + i} \right|}} = 1\) \(\Leftrightarrow \left| {z - i} \right| = \left| {z + i} \right| \) \(\Leftrightarrow \left| {x + \left( {y - 1} \right)i} \right| = \left| {x + \left( {y + 1} \right)i} \right|\)

\( \Leftrightarrow {x^2} + {\left( {y - 1} \right)^2} = {x^2} + {\left( {y + 1} \right)^2}\) \(\Leftrightarrow {x^2} + {y^2} - 2y + 1 \) \(= {x^2} + {y^2} + 2y + 1\)

\( \Leftrightarrow y = 0 \)

\(\Leftrightarrow \) z là số thực.

Tập hợp M là trục thực \(Ox\).

LG c

\(\left| z \right| = \left| {\overline z  - 3 + 4i} \right|\)

Phương pháp giải:

Giả sử z=x+yi, \(x,y\in R\), thay vào điều kiện bài cho tìm mối quan hệ x,y.

Lời giải chi tiết:

Giả sử z=x+yi, \(x,y\in R\).

\(\left| z \right| = \left| {\overline z  - 3 + 4i} \right| \) \(\Leftrightarrow \left| {x + yi} \right| = \left| {x - yi - 3 + 4i} \right|\)

\( \Leftrightarrow \left| {x + yi} \right| = \left| {\left( {x - 3} \right) + \left( {4 - y} \right)i} \right| \) \( \Leftrightarrow {x^2} + {y^2}\) \( = {\left( {x - 3} \right)^2} + {\left( {4 - y} \right)^2}\)

\( \Leftrightarrow 6x + 8y = 25\)

Tập hợp M là đường thẳng có phương trình: \(6x + 8y = 25\)

 Loigiaihay.com


Bình chọn:
3.8 trên 4 phiếu

Các bài liên quan: - Bài 1. Số phức

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài