Bài 8 trang 190 SGK Giải tích 12 Nâng cao


Chứng minh rằng: a)) Nếu vec tơ ...

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng:

LG a

Nếu vec tơ \(\overrightarrow u \) của mặt phẳng phức biểu diễn số phức z thì độ dài của vectơ \(\overrightarrow u \) là \(\left| {\overrightarrow u } \right| = \left| z \right|\), và từ đó nếu các điểm \({A_1},{A_2}\) theo thứ tự biểu diễn các số phức \({z_1},{z_2}\) thì \(\left| {\overrightarrow {{A_1}{A_2}} } \right| = |{z_2} - {z_1}|;\)

Phương pháp giải:

Độ dài véc tơ \(\overrightarrow u  = \left( {a;b} \right)\) là \(\left| {\overrightarrow u } \right| = \sqrt {{a^2} + {b^2}} \)

Mô đun số phức \(z = a + bi\) là \(\left| z \right| = \sqrt {{a^2} + {b^2}} \)

Lời giải chi tiết:

Nếu \(z=a+bi\;(a,b\in\mathbb R)\) thì \(|z| = \sqrt {{a^2} + {b^2}} \)

\(\overrightarrow u \) biểu diễn số phức z thì \(\overrightarrow u  = \left( {a;b} \right)\) và \(|\overrightarrow u | = \sqrt {{a^2} + {b^2}} \)

Do đó \(\left| {\overrightarrow u } \right| = \left| z \right|\).

Gọi A1 là điểm biểu diễn số phức z1=a1+b1 i=>A1 (a1;b1)

A2 là điểm biểu diễn số phức z2=a2+b2 i=>A2 (a2;b2)

\(\begin{array}{l} \Rightarrow \overrightarrow {{A_1}{A_2}}  = \left( {{a_2} - {a_1};{b_2} - {b_1}} \right)\\ \Rightarrow \left| {\overrightarrow {{A_1}{A_2}} } \right| = \sqrt {{{\left( {{a_2} - {a_1}} \right)}^2} + {{\left( {{b_2} - {b_1}} \right)}^2}} \\{z_2} - {z_1} = \left( {{a_2} + {b_2}i} \right) - \left( {{a_1} + {b_1}i} \right)\\ = \left( {{a_2} - {a_1}} \right) + \left( {{b_2} - {b_1}} \right)i\\ \Rightarrow \left| {{z_2} - {z_1}} \right| = \sqrt {{{\left( {{a_2} - {a_1}} \right)}^2} + {{\left( {{b_2} - {b_1}} \right)}^2}} \\ \Rightarrow \left| {\overrightarrow {{A_1}{A_2}} } \right| = \left| {{z_2} - {z_1}} \right|\end{array}\)

LG b

Với mọi số phức z, z', ta có \(\left| {zz'} \right| = \left| z \right|\left| {z'} \right|\) và khi \(z \ne 0\) thì \(\left| {{{z'} \over z}} \right| = {{|z'|} \over {|z|}};\)

Lời giải chi tiết:

\(z=a+bi;\;z'=a'+b'i\) thì \(|z{|^2} = {a^2} + {b^2};|z'{|^2} = a{'^2} + b{'^2}\) và \(z.z' = (aa' - bb') + (ab' + a'b)i\) nên 

\(\eqalign{
& |z.z'{|^2} = {(aa' - bb')^2} + {(ab' + a'b)^2} \cr & = \left( {aa'} \right) + {\left( {bb'} \right)^2} - 2aa'bb' \cr & + {\left( {ab'} \right)^2} + {\left( {a'b} \right)^2} + 2ab'a'b\cr &= {(aa')^2} + {(bb')^2} + {(ab')^2} + {(a'b)^2} \cr 
&|z{|^2}.|z'{|^2} = \left( {{a^2} + {b^2}} \right)\left( {a{'^2} + b{'^2}} \right)\cr 
& = {a^2}a{'^2} + {a^2}b{'^2} + a{'^2}{b^2} + {b^2}b{'^2}\cr & = {(aa')^2} + {(bb')^2} + {(ab')^2} + {(a'b)^2} \cr 
& \Rightarrow |zz'|^2 = |z|^2.|z'|^2\cr &\Rightarrow |zz'| = |z|.|z'| \cr} \)

Khi \(z \ne 0\) ta có:

\(\left| {{{z'} \over z}} \right| \) \(= \left| {{{z'\overline z } \over {|z{|^2}}}} \right| \) \(= {1 \over {|z{|^2}}}|z'.\overline z | \) \(= {1 \over {|z{|^2}}}.\left| {z'} \right|.\left| {\overline z } \right| \) \(= {1 \over {|z{|^2}}}.|z'|.|z| \) \( = {{|z'|} \over {|z|}}\)

LG c

Với mọi số phức z, z', ta có \(|z + z'| \le |z| + |z'|.\)

Phương pháp giải:

Đưa về véc tơ biểu diễn số phức và áp dụng bất đẳng thức véc tơ suy ra đpcm.

Lời giải chi tiết:

Giả sử \(\overrightarrow u \) biểu diễn z và \(\overrightarrow {u'} \) biểu diễn z' thì \(\overrightarrow u+\overrightarrow {u'} \) biểu diễn z+z'. Ta có:

\(\left| {\overrightarrow u  + \overrightarrow {u'} } \right| = \left| {z + z'} \right|;\,\left| {\overrightarrow u } \right| = \left| z \right|;\) \(\left| {\overrightarrow {u'} } \right| = \left| {z'} \right|\)

Mà \(\left| {\overrightarrow u  + \overrightarrow {u'} } \right| \le \left| {\overrightarrow u } \right| + \left| {\overrightarrow {u'} } \right|\) nên \(\left| {z + z'} \right| \le \left| z \right| + \left| {z'} \right|\)

Dấu "=" xảy ra khi \(z=0\) hoặc \(z'=0\).

Cách khác:

Với mọi số phức z, z’, ta có: z + z’ = (a +a’) + (b +b’)i

\(\begin{array}{l} \Rightarrow \left| {z + z'} \right| = \sqrt {{{\left( {a + a'} \right)}^2} + {{\left( {b + b'} \right)}^2}} \\\left| z \right| + \left| {z'} \right| = \sqrt {{a^2} + {b^2}}  + \sqrt {a{'^2} + b{'^2}} \end{array}\)

Theo yêu cầu bài toán ta cần chứng minh:

Theo Bu-nhi-cốp-xki ta có bất đẳng thức (*) đúng với a,b,a',b'R nên |z+z'| ≤ |z|+|z'| (đpcm)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.7 trên 7 phiếu

Các bài liên quan: - Bài 1. Số phức

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài