
Xác định phần thực và phần ảo của các số sau:
LG a
\(i + \left( {2 - 4i} \right) - \left( {3 - 2i} \right)\);
Phương pháp giải:
Thực hiện công trừ các số phức suy ra phần thực, phần ảo.
Số phức z=a+bi có phần thực a và phần ảo b.
Lời giải chi tiết:
Ta có:
\(i + \left( {2 - 4i} \right) - \left( {3 - 2i} \right) \\= i + 2 - 4i - 3 + 2i \\= - 1 - i\)
Có phần thực bằng \(-1\); phần ảo bằng \(-1\).
LG b
\({\left( {\sqrt 2 + 3i} \right)^2}\)
Phương pháp giải:
Sử dụng hằng đẳng thức \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\)
Lời giải chi tiết:
\({\left( {\sqrt 2 + 3i} \right)^2} \\= 2 + 6\sqrt 2i + 9{i^2} \\ = 2 + 6\sqrt 2 i - 9\\= - 7 + 6{\sqrt 2} i\)
Có phần thực bằng \(-7\), phần ảo bằng \(6\sqrt 2 \).
LG c
\(\left( {2 + 3i} \right)\left( {2 - 3i} \right)\)
Phương pháp giải:
Sử dụng hằng đẳng thức \(\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\)
Lời giải chi tiết:
\(\left( {2 + 3i} \right)\left( {2 - 3i} \right) \\= 4 - 9{i^2} \\= 4 + 9 = 13\)
Có phần thực bằng \(13\), phần ảo bằng \(0\).
LG d
\(i\left( {2 - i} \right)\left( {3 + i} \right)\).
Phương pháp giải:
Nhân cã số phức suy ra phần thực và phần ảo.
Lời giải chi tiết:
\(i\left( {2 - i} \right)\left( {3 + i} \right) \\= \left( {2i + 1} \right)\left( {3 + i} \right) \\= 6i + 2{i^2} + 3 + i \\= 1 + 7i\)
Có phần thực bằng \(1\), phần ảo bằng \(7\).
Loigiaihay.com
Xác định các số phức biểu diễn bởi các đỉnh của một lục giác đều có tâm là gốc tọa độ O trong mặt phẳng phức, biết rằng một đỉnh biểu diễn số i.
Thực hiện phép tính:
Hãy tính
Chứng minh rằng: a) Phần thực của số phức z bằng...
Chứng minh rằng với mọi số nguyên m > 0, ta có:
Chứng minh rằng: a)) Nếu vec tơ ...
Xác định tập hợp câc điểm reong mặt phẳng phức biểu diễn các số phức z thỏa mãn từng điều kiện sau:
Chứng minh rằng
Hỏi mỗi số sau đây là số thực hay số ảo (z là số phức tùy ý cho trước sao cho biểu thức xác định)?
Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thỏa mãn từng điều kiện sau:
Giải các phương trình sau (với ẩn z)
Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thỏa mãn điều kiện
Hỏi trọng tâm của tam giác ABC biểu diễn số phức nào?
Đố vui. Trong mặt phẳng phức cho các điểm: O (gốc tọa độ), A biểu diễn số 1, B biểu diễn số phức z không thực, A' biểu diễn số phức z'...
Biểu diễn các số đó trong mặt phẳng phức.
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: