Bài 6 trang 190 SGK Giải tích 12 nâng cao


Chứng minh rằng: a) Phần thực của số phức z bằng...

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng:

LG a

Phần thực của số phức z bằng \({1 \over 2}\left( {z + \overline z } \right)\), phần ảo của số phức z bằng \({1 \over {2i}}\left( {z - \overline z } \right);\)

Phương pháp giải:

Giả sử \(z=a+bi\;(a,b\in\mathbb R)\), tính các số phức \({1 \over 2}\left( {z + \overline z } \right)\) và \({1 \over 2}\left( {z + \overline z } \right)\), phần ảo của số phức z bằng \({1 \over {2i}}\left( {z - \overline z } \right)\) suy ra đpcm.

Lời giải chi tiết:

Giả sử \(z=a+bi\;(a,b\in\mathbb R)\) thì \(\overline z  = a - bi\)

\( \Rightarrow \frac{1}{2}\left( {z + \overline z } \right)\) \( = \frac{1}{2}\left( {a + bi + a - bi} \right) = a\) là phần thực của \(z\).

\(\frac{1}{{2i}}\left( {z - \overline z } \right)\) \( = \frac{1}{{2i}}\left( {a + bi - a + bi} \right)\) \( = \frac{1}{{2i}}.2bi = b\) là phần ảo của \(z\).

LG b

Số phức z là số ảo khi và chỉ khi \(z =  - \overline z ;\)

Lời giải chi tiết:

z là số ảo khi và chỉ khi phần thực của z bằng 0

\(\Leftrightarrow {1 \over 2}\left( {z + \overline z } \right) = 0 \Leftrightarrow z =  - \overline z \)

Cách khác:

\(z =- \overline z\) \(\Leftrightarrow z + \overline z  = 0 \) \(\Leftrightarrow a + bi + a - bi =0\) \( \Leftrightarrow 2a = 0 \) \(\Leftrightarrow a = 0\)

LG c

Với mọi số phức z, z', ta có \(\overline {z + z'}  = \overline z  + \overline {z'} ,\,\overline {zz'}  = \overline z .\,\overline {z'} \), và nếu \(z \ne 0\) thì \({{\overline {z'} } \over {\overline z }} = \overline {\left( {{{z'} \over z}} \right)} \).

Lời giải chi tiết:

Giả sử \(z=a+bi;\; z'=a'+b'i\) \((a,b,a',b'\in\mathbb R)\)

Ta có:

\(\eqalign{
& \overline {z + z'} = \overline {(a + a') + (b + b')i} \cr &= a + a' - (b + b')i \cr 
&= a - bi + a' - b'i = \overline z + \overline {z'} \cr 
& \overline {z.z'} = \overline {\left( {a + bi} \right).\left( {a' + b'i} \right)} \cr &= \overline {\left( {aa' - bb'} \right) + \left( {ab' + a'b} \right)i} \cr 
& = aa' - bb' - \left( {ab' + a'b} \right)i \cr 
&  \overline z.\overline {z'}  = \left( {a - bi} \right)\left( {a' - b'i} \right)\cr 
& = aa' - a'bi - ab'i + bb'{i^2}\cr & = aa' - bb' - \left( {a'b + ab'} \right)i\cr & \Rightarrow \overline {z.z'}  = \overline z .\overline {z'} \cr &\overline {\left( {{{z'} \over z}} \right)} = \overline {\left( {{{z'.\overline z } \over {z.\overline z }}} \right)} = {1 \over {z.\overline z }}.\overline {z'} .\overline {\overline z } \cr &= {1 \over {z.\overline z }}.\overline {z'} .z = {{\overline {z'} } \over {\overline z }} \cr} \)

 Loigiaihay.com


Bình chọn:
3.3 trên 3 phiếu

Các bài liên quan: - Bài 1. Số phức

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài