Bài 3 trang 189 SGK Đại số và Giải tích 12 Nâng cao


Đề bài

Xác định các số phức biểu diễn bởi các đỉnh của một lục giác đều có tâm là gốc tọa độ \(O\) trong mặt phẳng phức, biết rằng một đỉnh biểu diễn số i.

Phương pháp giải - Xem chi tiết

Dựng hình suy ra tọa độc các điểm cần tìm.

Lời giải chi tiết

Điểm A(0;1) biểu diễn số \(i\).

F có tọa độ \(\left( {\cos {\pi  \over 6};\sin {\pi  \over 6}} \right) = \left( {{{\sqrt 3 } \over 2};{1 \over 2}} \right)\).

F biểu diễn số phức \({{\sqrt 3 } \over 2} + {1 \over 2}i.\)

E đối xứng với F qua \(Ox\) nên \(E\left( {\frac{{\sqrt 3 }}{2}; - \frac{1}{2}} \right)\)

E biểu diễn số phức \({{\sqrt 3 } \over 2} - {1 \over 2}i.\)

B đối xứng với E qua O nên \(B\left( {-\frac{{\sqrt 3 }}{2};  \frac{1}{2}} \right)\)

B biểu diễn số \( - {{\sqrt 3 } \over 2} + {1 \over 2}i.\)

C đối xứng với F qua O nên \( C\left( {-{{\sqrt 3 } \over 2};-{1 \over 2}} \right)\)

C biểu diễn số phức \( - {{\sqrt 3 } \over 2} - {1 \over 2}i.\)

D đối xứng với A qua O nên D(0;-1)

D biểu diễn số phức \(–i\).

 Loigiaihay.com


Bình chọn:
3.3 trên 7 phiếu

Các bài liên quan: - Bài 1. Số phức

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Hỏi bài