Bài 5 trang 190 SGK Đại số và Giải tích 12 Nâng cao


Hãy tính

Đề bài

Cho \(z =  - {1 \over 2} + {{\sqrt 3 } \over 2}i.\)

Hãy tính \({1 \over z}\); \(\overline z \); \({z^2}\); \({\left( {\overline z } \right)^3}\); \(1 + z + {z^2}\).

Phương pháp giải - Xem chi tiết

Sử dụng các công thức:

\(\dfrac{1}{z} = \dfrac{{\overline z }}{{{{\left| z \right|}^2}}}\)

Kết hợp các công thức cộng, trừ nhân số phức.

Lời giải chi tiết

Ta có \(z =  - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i \) \(\Rightarrow \overline z  =  - \frac{1}{2} - \frac{{\sqrt 3 }}{2}i\)

\(\left| z \right| = \sqrt {{{\left( { - {1 \over 2}} \right)}^2} + {{\left( {{{\sqrt 3 } \over 2}} \right)}^2}}  = 1\)

Nên \({1 \over z} = {{\overline z } \over {{{\left| z \right|}^2}}} = \overline z  =  - {1 \over 2} - {{\sqrt 3 } \over 2}i\)

\({z^2} = {\left( { - {1 \over 2} + {{\sqrt 3 } \over 2}i} \right)^2} \) \(= {1 \over 4} - {{\sqrt 3 } \over 2}i - {3 \over 4} =  - {1 \over 2} - {{\sqrt 3 } \over 2}i\)

\(\begin{array}{l}
{\left( {\overline z } \right)^3} = \overline z .{\left( {\overline z } \right)^2}\\
= \left( { - \frac{1}{2} - \frac{{\sqrt 3 }}{2}i} \right){\left( { - \frac{1}{2} - \frac{{\sqrt 3 }}{2}i} \right)^2}\\
= \left( { - \frac{1}{2} - \frac{{\sqrt 3 }}{2}i} \right)\left( {\frac{1}{4} + \frac{{\sqrt 3 }}{2}i + \frac{3}{4}{i^2}} \right)\\
= \left( { - \frac{1}{2} - \frac{{\sqrt 3 }}{2}i} \right)\left( { - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i} \right)\\
= {\left( { - \frac{1}{2}} \right)^2} - {\left( {\frac{{\sqrt 3 }}{2}i} \right)^2}\\
= \frac{1}{4} - \frac{3}{4}{i^2}\\
= \frac{1}{4} + \frac{3}{4} = 1
\end{array}\)

\(1 + z + {z^2}\) \( = 1 + \left( { - {1 \over 2} + {{\sqrt 3 } \over 2}i} \right) + \left( { - {1 \over 2} - {{\sqrt 3 } \over 2}i} \right)\) \( = 0\)

Chú ý:

Có thể tính \(\frac{1}{z}\) và \(\left( {\overline z } \right)^3\) như sau:

Loigiaihay.com


Bình chọn:
3.5 trên 6 phiếu

Các bài liên quan: - Bài 1. Số phức

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài