Giải bài tập Toán 12 Nâng cao, Toán 12 Nâng cao, đầy đủ giải tích và hình học
Bài 2. Căn bậc hai của số phức và phương trình bậc hai
Bài 17 trang 195 SGK Đại số và Giải tích 12 Nâng cao>
Tìm các căn bậc hai của mỗi số phức sau:
Đề bài
Tìm các căn bậc hai của mỗi số phức sau:\( - i\);\(4i\);\( - 4\);\(1 + 4\sqrt 3 i\).
Phương pháp giải - Xem chi tiết
- Giả sử \(z=x+yi\) là căn bậc hai của w.
- Lập hệ phương trình ẩn x, y dựa vào điều kiện \(z^2=w\).
- Giải hệ tìm x, y và kết luận.
Lời giải chi tiết
* Giả sử \(z=x+yi\) là căn bậc hai của \(-i\), ta có:
\({\left( {x + yi} \right)^2} = - i \) \(\Leftrightarrow {x^2} - {y^2} + 2xyi = - i\) \( \Leftrightarrow \left\{ \matrix{ {x^2} - {y^2} = 0\,\,\left( 1 \right) \hfill \cr 2xy = - 1\,\,\,\,\,\,\left( 2 \right) \hfill \cr} \right.\)
Từ (2) suy ra \(y = - {1 \over {2x}}\) thế vào (1) ta được:
\({x^2} - {1 \over {4{x^2}}} = 0 \Leftrightarrow {x^4} = {1 \over 4} \Leftrightarrow x = \pm {1 \over {\sqrt 2 }}\)
+) Với \(x = {1 \over {\sqrt 2 }}\)ta có \(y = - {1 \over {2x}} = - {1 \over {\sqrt 2 }}\)
+) Với \(x = - {1 \over {\sqrt 2 }}\)ta có \(y = - {1 \over {2x}} = {1 \over {\sqrt 2 }}\)
Hệ có hai nghiệm là: \(\left( { - {1 \over {\sqrt 2 }},{1 \over {\sqrt 2 }}} \right),\left( {{1 \over {\sqrt 2 }}, - {1 \over {\sqrt 2 }}} \right)\)
Vậy \(–i\) có hai căn bậc hai là: \({z_1} = - {1 \over {\sqrt 2 }} + {1 \over {\sqrt 2 }}i\),\({z_2} = {1 \over {\sqrt 2 }} - {1 \over {\sqrt 2 }}i\)
* Giả sử \(z=x+yi\) là căn bậc hai của \(4i\), ta có:
\({\left( {x + yi} \right)^2} = 4i \) \(\Leftrightarrow {x^2} - {y^2} + 2xyi = 4i \) \(\Leftrightarrow \left\{ \matrix{ {x^2} - {y^2} = 0\,\,\left( 1 \right) \hfill \cr xy = 2\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right) \hfill \cr} \right.\)
Thay \(y = {2 \over x}\) vào phương trình thứ nhất ta được:
\({x^2} - {4 \over {{x^2}}} = 0 \Leftrightarrow {x^4} = 4 \Leftrightarrow x = \pm \sqrt 2 \)
+) Với \(x = \sqrt 2 \) ta có \(y = {2 \over x} = \sqrt 2 \);
+) Với \(x = - \sqrt 2 \) ta có \(y = - \sqrt 2 \)
Hệ có hai nghiệm \(\left( {\sqrt 2 ;\sqrt 2 } \right)\),\(\left( { - \sqrt 2 ; - \sqrt 2 } \right)\)
Vậy \(4i\) có hai căn bậc hai là:\({z_1} = \sqrt 2 + \sqrt 2 i\); \({z_2} = - \sqrt 2 - \sqrt 2 i\)
* Ta có \( - 4 = 4{i^2} = {\left( {2i} \right)^2}\) do đó \(-4\) có hai căn bậc hai là \( \pm 2i\)
* Giả sử \(z=x+yi\) là căn bậc hai của \(1 + 4\sqrt 3 i\).
\({\left( {x + yi} \right)^2} = 1 + 4\sqrt 3 i\)
\( \Leftrightarrow \left\{ \matrix{ {x^2} - {y^2} = 1 \hfill \cr \,2xy = 4\sqrt 3 \, \hfill \cr} \right.\)\( \Leftrightarrow \left\{ \matrix{ y = {{2\sqrt 3 } \over x} \hfill \cr {x^2} - {{12} \over {{x^2}}}=1 \hfill \cr} \right. \)
\( \Leftrightarrow \left\{ \begin{array}{l}
y = \frac{{2\sqrt 3 }}{x}\\
{x^4} - {x^2} - 12 = 0
\end{array} \right. \)\( \Leftrightarrow \left\{ \begin{array}{l}
y = \frac{{2\sqrt 3 }}{x}\\
\left[ \begin{array}{l}
{x^2} = 4\\
{x^2} = - 3\left( {loai} \right)
\end{array} \right.
\end{array} \right.\)
\( \Leftrightarrow \left\{ \matrix{ y = {{2\sqrt 3 } \over x} \hfill \cr {x^2} = 4 \hfill \cr} \right. \)
\( \Leftrightarrow \left\{ \matrix{ x = 2 \hfill \cr y = \sqrt 3 \hfill \cr} \right.\) hoặc \(\left\{ \matrix{ x = - 2 \hfill \cr y = - \sqrt 3 \hfill \cr} \right.\)
Hệ có hai nghiệm \(\left( {2;\sqrt 3 } \right),\left( { - 2; - \sqrt 3 } \right)\)
Vậy \(1 + 4\sqrt 3 i\) có hai căn bậc hai là:\({z_1} = 2 + \sqrt 3 i\),\({z_2} = - 2 - \sqrt 3 i\)
Loigiaihay.com




